matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionengleichung angeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - gleichung angeben
gleichung angeben < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichung angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 So 20.01.2008
Autor: Stiffler1234

Aufgabe
geben sie die gleichung einer geraden an, die durch den punkt (2;11) geht und durch den punkt (22;4) im abstand 2 passiert!

Kann mir jemand bei dieser Aufgabe helfen....sie erscheint erst recht einfach, wenn der Abstand 2 nicht relevant wäre!
weiss gerade garnicht wie ich anfangen soll!!!

mfg, steve








Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gleichung angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 20.01.2008
Autor: Somebody


> geben sie die gleichung einer geraden an, die durch den
> punkt (2;11) geht und durch den punkt (22;4) im abstand 2
> passiert!
>  Kann mir jemand bei dieser Aufgabe helfen....sie erscheint
> erst recht einfach, wenn der Abstand 2 nicht relevant
> wäre!
>  weiss gerade garnicht wie ich anfangen soll!!!

Du fängst am Besten damit an, das hinzuschreiben, was Du sicherlich hinschreiben kannst. Etwa: als Ansatz für eine Geradengleichung könntest Du schreiben, sei $g: ax+by-c=0$ die Gleichung der gesuchten Geraden.
Dann kannst Du die Bedingung, dass der Punkt $(2;11)$ auf $g$ liegt, als erste Gleichung [mm] $a\cdot 2+b\cdot [/mm] 11-c=0$ für die zu bestimmenden Formvariablen $a,b,c$ der Geradengleichung schreiben.
Nun noch die Abstandsbedingung. Hast Du vielleicht schon mal was von der Hesseschen Normalform gehört? - Wie auch immer: die Bedingung, dass der Abstand des Punktes $(22;4)$ von $g$ gleich $2$ sein soll, wird durch die folgende Betragsgleichung erfasst:

[mm]\frac{|a\cdot 22+b\cdot 4-c|}{\sqrt{a^2+b^2}}=2[/mm]

Nun musst Du also Werte für $a,b,c$ suchen, die diese beiden Gleichungen erfüllen (es gibt unendlich viele Lösungen - aber wohl nicht mehr als zwei Geraden $g$, die die gewünschte Bedingung erfüllen).

Eine andere Möglichkeit wäre diese: die gesuchte Gerade $g$ muss durch $(2;11)$ gehen und Tangente an den Kreis mit Radius $r=2$ und Mittelpunkt $(22;4)$ sein.

Bezug
                
Bezug
gleichung angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 21.01.2008
Autor: Stiffler1234

is teilweise klar, blick aber immer noch nicht durch!! also muss ich a b und c ausrechnen und dann da einsetzen......!!!!

gruß

Bezug
                        
Bezug
gleichung angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 21.01.2008
Autor: Steffi21

Hallo, wir wissen leider wenig von dir, löse es über Vektorrechnung,

benennen wir eine Punkt P(x; y), dort steht die Gerade senkrecht auf dem Abstand,
[mm] P_1(22; [/mm] 4) und [mm] P_2(2; [/mm] 11)

[Dateianhang nicht öffentlich]

1) die beiden Vektoren [mm] \overrightarrow{P_2P} [/mm] und [mm] \overrightarrow{P_1P} [/mm] stehen senkrecht, somit Skalarprodukt Null

2) der Betrag von [mm] \overrightarrow{P_1P} [/mm] beträgt 2

damit kannst du P bestimmen, dann hast du zwei Punkte [mm] P_2(2; [/mm] 11) und P für deine Gerade,

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]