matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionengleichmäßige konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - gleichmäßige konvergenz
gleichmäßige konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige konvergenz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:49 Mi 18.01.2012
Autor: yangwar1

Aufgabe
Untersuchen Sie die Funktion auf gleichmäßige und punktweise Stetigkeit:

[mm] f_n: \IR \to \IR [/mm]
x [mm] \mapsto cos(\bruch{x}{n}) [/mm]

Die Folge [mm] a_n [/mm] := [mm] \bruch{1}{n} [/mm] für [mm] \limes_{n\rightarrow\infty} [/mm] geht gegen 0. Somit auch [mm] \bruch{1}{n_0}+...+\bruch{1}{n_x}. [/mm]
Also gilt [mm] \limes_{n\rightarrow\infty} cos(\bruch{x}{n})=cos(0). [/mm]
Also gilt: [mm] |coscos(\bruch{x}{n})-cos(0)|< \varepsilon [/mm] für alle [mm] \varepsilon [/mm] >0 ab [mm] n>n_0 [/mm] mit [mm] n_0 \in \IN. [/mm]

Ist das schon ausreichend um die gleichmäßige Konvergenz zu zeigen?

        
Bezug
gleichmäßige konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 18.01.2012
Autor: Gonozal_IX

Hiho,

>  Die Folge [mm]a_n[/mm] := [mm]\bruch{1}{n}[/mm] für [mm]\limes_{n\rightarrow\infty}[/mm] geht gegen 0. [ok]

> Somit auch [mm]\bruch{1}{n_0}+...+\bruch{1}{n_x}.[/mm]

Was immer du damit meinst, ich wag es aber zu bezweifeln.
Wieviele Summanden sollen denn da stehen?

>  Also gilt [mm]\limes_{n\rightarrow\infty} cos(\bruch{x}{n})=cos(0).[/mm]

= 1

  

> Also gilt: [mm]|coscos(\bruch{x}{n})-cos(0)|< \varepsilon[/mm] für
> alle [mm]\varepsilon[/mm] >0 ab [mm]n>n_0[/mm] mit [mm]n_0 \in \IN.[/mm]

Ok, was immer du hier gemacht hast, es macht keinen Sinn.

Für gleichmäßige Konvergenz musst du nun doch zeigen, dass

[mm] $||cos\left(\bruch{x}{n}\right) [/mm] - [mm] 1||_\infty \to [/mm] 0$ für [mm] $n\to\infty$ [/mm]

Was ist aber [mm] $||cos\left(\bruch{x}{n}\right) [/mm] - [mm] 1||_\infty$ [/mm] für alle x?
Geht das gegen Null?


Oder um es mit dem [mm] $\varepsilon$ [/mm] - Kriterium zu machen, wie du es versucht hast:

Du müsstest zeigen, dass [mm] $\forall\,\varepsilon>0\;\exists\, n_0 \;\forall\,n\ge n_0:\quad |\cos\left(\bruch{x}{n}\right) [/mm] - 1| < [mm] \varepsilon \quad\forall\, x\in\IR$ [/mm]

Was ist aber der maximale Wert, den der Ausdruck [mm] $|\cos\left(\bruch{x}{n}\right) [/mm] - 1|$ für alle n annimmt? Wird dieser beliebig klein für ein beliebiges x (aber festes n!)?

MFG,
Gono.

Bezug
                
Bezug
gleichmäßige konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 18.01.2012
Autor: yangwar1

Also ich wollte eigentlich nur ausdrücken, dass die Funktionenfolge [mm] f_n [/mm] = [mm] cos(\bruch{x}{n}) [/mm] konvergent mit cos(0) ist, da die Folge [mm] a_n:=\bruch{x}{n} [/mm]
für [mm] \limes_{n\rightarrow\infty} a_n [/mm] gegen cos(0) geht.
Also: [mm] f_1=cos(\bruch{x}{1}), f_2=\bruch{x}{2})... [/mm]
Und damit ist die Differenz aus der Funktionenfolge ab einem [mm] n_0 [/mm] kleiner als jedes [mm] \varepsilon [/mm] >0. Somit: [mm] |cos(x/n)-cos(0)|<\varepsilon. [/mm] Damit ist sie punktweise stetig.
Das müsste doch stimmen?

Mit [mm] \bruch{x}{n}=\bruch{1}{n}+...+\bruch{1}{n} [/mm] meinte ich, dass man die Brüche ja zerlegen kann. [mm] \bruch{2}{n}=\bruch{1}{n}+\bruch{1}{n}. [/mm]
Das klappt aber natürlich nicht immer, da ja x [mm] \in \IZ. [/mm]

Bezug
                        
Bezug
gleichmäßige konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mi 18.01.2012
Autor: Gonozal_IX

Huhu,

> Also ich wollte eigentlich nur ausdrücken, dass die
> Funktionenfolge [mm]f_n[/mm] = [mm]cos(\bruch{x}{n})[/mm] konvergent mit
> cos(0) ist, da die Folge [mm]a_n:=\bruch{x}{n}[/mm]
>  für [mm]\limes_{n\rightarrow\infty} a_n[/mm] gegen cos(0) geht.

ja, das folgt sofort aus der Stetigkeit von [mm] $\cos$, [/mm] denn es gilt ja [mm] $\lim_{n\to\infty}\cos\left(\bruch{x}{n}\right) [/mm] = [mm] \cos\left(\lim_{n\to\infty}\bruch{x}{n}\right) [/mm] = [mm] \cos(0) [/mm] = 1$

> Damit ist sie punktweise stetig.

punktweise konvergent.

> Das müsste doch stimmen?

Ja, aber was ist nun mit gleichmäßiger Konvergenz? Dazu hab ich dir ja schon einige Tips gegeben.

MFG;
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]