matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1gleichmäßige Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - gleichmäßige Konvergenz
gleichmäßige Konvergenz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:31 Mo 08.01.2007
Autor: bobby

Hallo!

Kann mir jemand bei dieser Aufgabe helfen:

Gegeben sei die Funktionenfolge [mm] f_{n}(x)=nx(1-x)^{n}, f_{n}:[0,1]\to\IR, n\in\IN. [/mm] Zeigen, dass [mm] f_{n} [/mm] punktweise, aber nicht gleichmäßig konvergiert.

Hab erstmal mit punktweise angefangen:
Sei also x fest, [mm] n\to\infty: [/mm]
das gibt die Grenzfunktion f(x)=0.

Für die gleichmäßige Konvergenz hab ich die Ableitung von [mm] f_{n} [/mm] bestimmt:
[mm] f'_{n}=n(1-x)^{n}+n^{2}x(1-x)^{n-1} [/mm]
Diese muss null gesetzt werden, um diejenigen x zu ermitteln, für die [mm] f_{n} [/mm] maximal wird...
Ab dem Punkt komme ich absolut nicht weiter...

        
Bezug
gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Mo 08.01.2007
Autor: statler

Guten Morgen Bobby!

> Kann mir jemand bei dieser Aufgabe helfen:
>  
> Gegeben sei die Funktionenfolge [mm]f_{n}(x)=nx(1-x)^{n}, f_{n}:[0,1]\to\IR, n\in\IN.[/mm]
> Zeigen, dass [mm]f_{n}[/mm] punktweise, aber nicht gleichmäßig
> konvergiert.
>  
> Hab erstmal mit punktweise angefangen:
>  Sei also x fest, [mm]n\to\infty:[/mm]
>  das gibt die Grenzfunktion f(x)=0.
>  
> Für die gleichmäßige Konvergenz hab ich die Ableitung von
> [mm]f_{n}[/mm] bestimmt:
>  [mm]f'_{n}=n(1-x)^{n}+n^{2}x(1-x)^{n-1}[/mm]

Hier fehlt beim 2. Summanden die innere Ableitung.

>  Diese muss null gesetzt werden, um diejenigen x zu
> ermitteln, für die [mm]f_{n}[/mm] maximal wird...
>  Ab dem Punkt komme ich absolut nicht weiter...

Die Ableitung kannst du durch Ausklammern in ein Produkt verwandeln und dann die beiden Faktoren untersuchen ...

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 08.01.2007
Autor: bobby

stimmt, dann ist die Ableitung:
[mm] f'_{n}=n(1-x)^{n}-n^{2}x(1-x)^{n-1} [/mm]
          [mm] =n(1-x)^{n-1}(1-x-nx) [/mm]

Setze ich das gleich null folgt aus dem zweiten Faktor:
0=1-x(1+n)
x(1+n)=1
also ist x=1/(1+n)

Der erste Faktor:
[mm] 0=n(1-x)^{n-1} [/mm]
[mm] 0=(1-x)^{n-1} [/mm]
das gilt doch nur für x=1.

Aber wieso kann ich daraus dann folgern, dass [mm] f_{n} [/mm] nicht gleichmäßig konvergent ist??
In diesem Fall wäre es das doch nicht, da ich ein x gefunden habe, dass von n abhängt und das bei der glm Konvergenz nicht abhängig von n sein soll, oder???

Bezug
                        
Bezug
gleichmäßige Konvergenz: weiterer Hinweis
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 08.01.2007
Autor: statler

Mahlzeit Bobby!

> stimmt, dann ist die Ableitung:
> [mm]f'_{n}=n(1-x)^{n}-n^{2}x(1-x)^{n-1}[/mm]
>            [mm]=n(1-x)^{n-1}(1-x-nx)[/mm]
>  
> Setze ich das gleich null folgt aus dem zweiten Faktor:
>  0=1-x(1+n)
>  x(1+n)=1
>  also ist x=1/(1+n)

Jetzt rechne mal an dieser Stelle den Funktionswert aus und prüf, wie der sich bei wachsendem n verhält. Die Frage ist doch, ob ich den für fast alle n gleichzeitig beliebig nahe an 0 kriege. Und?

> Der erste Faktor:
>  [mm]0=n(1-x)^{n-1}[/mm]
>  [mm]0=(1-x)^{n-1}[/mm]
>  das gilt doch nur für x=1.
>  
> Aber wieso kann ich daraus dann folgern, dass [mm]f_{n}[/mm] nicht
> gleichmäßig konvergent ist??
>  In diesem Fall wäre es das doch nicht, da ich ein x
> gefunden habe, dass von n abhängt und das bei der glm
> Konvergenz nicht abhängig von n sein soll, oder???

s. o.

Gruß
Dieter


Bezug
                                
Bezug
gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Mo 08.01.2007
Autor: bobby

Also, dann bekomm ich das hier:

[mm] f_{n}(1)=0 [/mm] für alle n
[mm] f_{n}(1/(1+n))=(n/(1+n))^{n+1} [/mm] und das konvergiert auch für alle n gegen 0

Aber dann folgt doch daraus jetzt, dass [mm] f_{n} [/mm] gleichmäßig konvergent ist, was es ja nicht sein soll, wo steckt denn da jetzt ein Widerspruch???


Bezug
                                        
Bezug
gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:26 Di 09.01.2007
Autor: statler

Guten Morgen Bobby!
(Fröhlich wollen wir den Tag beginnen!)

> Also, dann bekomm ich das hier:
>  
> [mm]f_{n}(1)=0[/mm] für alle n
>  [mm]f_{n}(1/(1+n))=(n/(1+n))^{n+1}[/mm] und das konvergiert auch
> für alle n gegen 0

Eben nich! Warum sollte es auch? Es ist doch
[mm] (n/(1+n))^{n+1} [/mm] = (1 - [mm] 1/(1+n))^{n+1} [/mm]
und jetzt denk mal ganz intensiv daran, wie die Eulersche Zahl entsteht:
e = [mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] 1/n)^{n} [/mm]
Das isses noch nich ganz, aber den Rest trau ich dir jetzt zu.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]