matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisgleichmäßig stetige Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - gleichmäßig stetige Funktion
gleichmäßig stetige Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßig stetige Funktion: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 13:18 Di 21.12.2004
Autor: Sandra21



Halloo


Kann mir jemand bei dieser Aufgabe ein Ansatz geben oder Hinweis wie ich das lösen kann.

Eine Funktion f:[a,b] --> [mm] \IR [/mm] heißt gleichmäßig stetig,falls gilt:

[mm] \forall \varepsilon [/mm] > 0: |x-y |< [mm] \delta \Rightarrow [/mm]  | f(x)-f(y) |< [mm] \varepsilon [/mm]

(a) Zeigen Sie: Jede stetige Funktion f: [a,b] --->  [mm] \IR [/mm] ist auch gleichmäßig stetig.

(b)Gilt diese Aussage auch für Funktionen f: [mm] \IR--> \IR? [/mm]

Danke
Sandra

Ich habe diese Aufgabe in keinen anderem Forum gestellt.


        
Bezug
gleichmäßig stetige Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Di 21.12.2004
Autor: Marc

Hallo Sandra,

dies ist jetzt deine 38. Frage ohne eigenen Ansatz (die Fragen, die du über verschiedene Benutzerkonten stellst zusammengezählt).

Bitte liefere gemäß unseren Forenregeln Ansätze zu dieser Frage nach und entscheide dich bitte bis Ende des Tages für ein Benutzerkonto.

Viele Grüße,
Marc



Bezug
                
Bezug
gleichmäßig stetige Funktion: lösungsansatz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:55 Di 21.12.2004
Autor: Chlors

Hi,
ich habe dasselbe Problem. und zwar hab ich mir zu a) überlegt, dass durch die stetigkeit von f, f ja bei jedem [mm] x_{0} [/mm] stetig ist ... da [mm] x_{0} [/mm] beliebig.. kann es als y gesehen werden und man hätte quasi die geforderte Gleichung. kann das richtig sein?? irgenwie erscheint es mir zu simple.
bei b) könnte man [mm] \IR [/mm] als Intervall darstellen, dann würde es auch dafür gelten.. allerdings habe ich in einem Buch ein Beispiel gesehen, wo die gleichmäßige stetigkeit nicht eintritt. Kann mir jemand einen Ansatz geben?
Liebe Grüße, Conny.

Bezug
                        
Bezug
gleichmäßig stetige Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mi 22.12.2004
Autor: Marcel

Hallo Conny!

> Hi,
> ich habe dasselbe Problem. und zwar hab ich mir zu a)
> überlegt, dass durch die stetigkeit von f, f ja bei jedem
> [mm]x_{0}[/mm] stetig ist ... da [mm]x_{0}[/mm] beliebig.. kann es als y
> gesehen werden und man hätte quasi die geforderte
> Gleichung. kann das richtig sein?? irgenwie erscheint es
> mir zu simple.

Ja, das ist auch zu simpel. Zunächst aber geben wir mal die Definition der glm. Stetigkeit für reellwertige Funktionen einer reeller Variablen richtig an:
$f: [mm] \IR \to \IR$ [/mm] heißt glm.  stetig, falls:
[mm] $\forall \varepsilon [/mm] > 0$: [mm] $\exists \delta=\delta_{\varepsilon}>0$:[/mm]  [m]\forall x,y \in \IR[/m] mit [mm] $|x-y|<\delta$ [/mm] gilt $|f(x)-f(y)|< [mm] \varepsilon$. [/mm]

Ist nun $f: [mm] \IR \to \IR$ [/mm] stetig, so ist $g:[a,b] [mm] \to \IR$ [/mm] ([m]-\infty < a \le b < \infty[/m]) mit $g(x)=f(x)$ ([m]\froall x \in [a,b][/m]) glm. stetig.

Beweis dazu:
Angenommen, das wäre nicht der Fall. Dann gibt es ein [m]\varepsilon_0 > 0[/m], so dass für alle [mm] $\delta [/mm] > 0$ zwei Punkte [m]x_{\delta},y_{\delta}\in [a,b][/m] existieren mit [mm] $|x_{\delta}-y_{\delta}|<\delta$ [/mm] und [m]|g(x_{\delta})-g(y_{\delta})|\ge\varepsilon_0[/m].
Insbesondere können wir also [m]\delta_n=\frac{1}{n}$ für $n \in \IN=\{1,\,2,\,3,...\}[/m] betrachten.
Demnach existieren dann für jedes $n [mm] \in \IN$ [/mm] zwei Punkte [m]x_n,y_n \in [a,b][/m], so dass [mm] $|x_n-y_n|<\frac{1}{n}$, [/mm] aber [mm] $|g(x_n)-g(y_n)|\ge\varepsilon_0$. [/mm]
Da $[a,b]_$ kompakt ist hat die Folge [mm] $(x_n)_{n \in \IN}$ [/mm] eine Teilfolge [m](x_{n_j})_{j \in \IN}[/m] mit [mm] $x_{n_j} \to [/mm] x$ ($j [mm] \to \infty$) [/mm] für ein gewisses $x [mm] \in [/mm] [a,b]$.
Daraus folgt für die Teilfolge [mm] $(y_{n_j})_{j \in \IN}$ [/mm] von [m](y_n)_{n \in \IN}[/m]:
[m]|x-y_{n_j}|=|x-x_{n_j}+x_{n_j}-y_{n_j}|\le \underbrace{|x-x_{n_j}|}_{\to\;0\,bei\;j \to \infty}+\underbrace{\underbrace{|x_{n_j}-y_{n_j}|}_{\le \frac{1}{n_j}}}_{\to\;0\,bei\;j \to \infty} \stackrel{j \to \infty}{\longrightarrow} 0 [/m]
und daher gilt auch [mm] $y_{n_j}\to [/mm] x$ ($j [mm] \to \infty$). [/mm]
Da $g$ auf $[a,b]_$ stetig ist (und damit insbesondere stetig in [m]x \in [a,b][/m]), folgt weiter:
[m]\varepsilon_0\le|g(x_{n_j})-g(y_{n_j})|\le \underbrace{|g(x_{n_j})-g(x)|}_{\to 0;\;bei\;j \to \infty}+\underbrace{|g(x)-g(y_{n_j})|}_{\to 0;\;bei\;j \to \infty} \stackrel{j \to \infty}{\longrightarrow} 0[/m] und damit
[mm] $\varepsilon_0 \le [/mm] 0$.
Widerspruch!                               [mm] $\Box$ [/mm]

>  bei b) könnte man [mm]\IR[/mm] als Intervall darstellen, dann würde
> es auch dafür gelten..

Das verstehe ich nicht. Wie wolltest du da vorgehen?

Aber b) gilt nicht:
Betrachte [mm] $f:\IR \to \IR$ [/mm] definiert durch [mm] $f(x):=x^2$ [/mm] ($x [mm] \in \IR$). [/mm] Dann ist $f$ stetig auf [mm] $\IR$, [/mm] aber nicht glm. stetig.
Der Beweis der Stetigkeit ist schnell abgetan, wenn man $f(x)=h(x)*h(x)_$ schreibt, wobei [m]h:\IR \to \IR[/m] mit $h(x)=x$ ($x [mm] \in \IR$) [/mm] definiert ist und man weiß (oder schnell beweist), dass $h$ stetig ist und wenn man weiß, dass das Produkt reellwertiger auf [mm] $\IR$ [/mm] stetiger Funktionen wieder eine reellwertige auf [m]\IR[/m] stetige Funktion ist.
Um zu beweisen, dass [mm] $f:\IR \to \IR$ [/mm] definiert durch [mm] $f(x):=x^2$ [/mm] ([m]x \in \IR[/m]) nicht gleichmäßig stetig auf [mm] $\IR$ [/mm] sein kann, nimmst du an, sie wäre es und führst das zum Widerspruch. Solltest du es nicht hinbekommen, so meldest du dich bitte noch mal!

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]