matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitgleichmäßig stetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - gleichmäßig stetig
gleichmäßig stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßig stetig: Grenzwert
Status: (Frage) beantwortet Status 
Datum: 22:28 Mo 14.12.2009
Autor: Zecha

Aufgabe
Sei f:(0,1] [mm] \to \IR [/mm] eine gleichmäßig stetige Funktion.
(i) Sei [mm] (X_{n})_{n\in\IN} [/mm] eine Folge in (0,1],  die in [mm] \IR [/mm] (und damit in [0,1])konvergiert. Zeigen Sie, dass [mm] \limes_{n\rightarrow\infty} f(X_{n}) [/mm] existiert.
(ii) Zeigen Sie, dass der Grenzwert [mm] \limes_{x\rightarrow 0+} [/mm] f(x) =f(0+) existiert, d.h. f ist stetig nach [0,1] fortsetzbar.

Abend,
Ich muss die Aufgabe lösen und habe keine ahnung wie...
Hoffe mir kann geholfen werde.
Freu mich auch über Denkanstöße bzw. kleine Ansetzte.

Gruß Zecha



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mo 14.12.2009
Autor: leduart

Hallo
Was bedeuted denn glm. Stetigkeit? Schreib die Def. davon auf. dann was heisst es [mm] f(x_n) [/mm] konvergiert?
Dann hast du nen Anfang und solltest weiter kommen.
Das ist immer dasselbe: Definition genau aufschreiben, Behauptung genau auf schreiben, dann hat man schon die halbe Aufgabe.
Gruss leduart

Bezug
                
Bezug
gleichmäßig stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mo 14.12.2009
Autor: Zecha

Hi Leduart,
Ich habe mir die definitionen auch schon angesehen, komm aber nicht weiter....
Ich weiß nicht wie ich die Def. zum Grenzwert bringen kann...

Bezug
                        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 14.12.2009
Autor: pelzig

Gleichmäßig stetige Funktionen bilden Cauchy-Folgen auf Cauchy-Folgen ab...

Gruß, Robert

Bezug
                                
Bezug
gleichmäßig stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Mo 14.12.2009
Autor: Zecha

Das ist Klasse^^ Jetzt komm ich doch erstmal weiter. Werde die Aufgabe zwar bestimmt nicht komplett lösen können aber immerhin ein Anfang.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]