matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitgleichm. stetig -->Cauchyfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - gleichm. stetig -->Cauchyfolge
gleichm. stetig -->Cauchyfolge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichm. stetig -->Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 08.06.2009
Autor: Doemmi

Aufgabe 1
Es seien (X,d) und (X',d') metrische Räume und f : X [mm] \to [/mm] X' gleichmäßig stetig. Es sei weiterhin [mm] (x_{n})_{n} \subset [/mm] X eine Cauchy-Folge. Zeigen Sie, dass dann auch [mm] (f(x_{n}))_{n} [/mm] eine Cauchy-Folge ist. Gilt diese Aussage auch noch, falls f lediglich stetig ist?

Aufgabe 2
Es sei f : (0,1] [mm] \to \IR [/mm] stetig. Zeigen Sie, dass f genau dann gleichmäßig stetig ist, wenn [mm] lim_{x \to 0, x>0} [/mm] f(x) existiert.

zu Aufgabe 1)

Ich muss ja zeigen, dass alle Teilfolgen von [mm] (f(x_{n}))_{n} [/mm] konvergieren (Definition der Cauchy-Folge). Wie ich das aber machen soll und was mir dabei die gleichmäßige Stetigkeit sagt, ist mir unklar.

zu Aufgabe 2)

f ist im Intervall (0,1] angeblich genau dann gleichmäßig stetig, wenn f(x) konvergiert. Meine Intuition sagt mir, dass diese Aussage falsch ist, kann ich das mit einem Gegenbeispiel widerlegen?

Vielen Dank für eure Hilfe!

        
Bezug
gleichm. stetig -->Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Di 09.06.2009
Autor: felixf

Hallo!

> Es seien (X,d) und (X',d') metrische Räume und f : X [mm]\to[/mm] X'
> gleichmäßig stetig. Es sei weiterhin [mm](x_{n})_{n} \subset[/mm] X
> eine Cauchy-Folge. Zeigen Sie, dass dann auch
> [mm](f(x_{n}))_{n}[/mm] eine Cauchy-Folge ist. Gilt diese Aussage
> auch noch, falls f lediglich stetig ist?
>  Es sei f : (0,1] [mm]\to \IR[/mm] stetig. Zeigen Sie, dass f genau
> dann gleichmäßig stetig ist, wenn [mm]lim_{x \to 0, x>0}[/mm] f(x)
> existiert.
>  zu Aufgabe 1)
>  
> Ich muss ja zeigen, dass alle Teilfolgen von [mm](f(x_{n}))_{n}[/mm]
> konvergieren (Definition der Cauchy-Folge).

Ich bezweifle sehr stark, dass dies die Definition einer Cauchy-Folge ist bei euch.

> Wie ich das
> aber machen soll und was mir dabei die gleichmäßige
> Stetigkeit sagt, ist mir unklar.

Schnapp dir eine Funktion wie in Aufgabe 2), und betrachte eine Folge in $(0, 1]$ die in $[0, 1]$ gegen 0 konvergiert.

> zu Aufgabe 2)
>  
> f ist im Intervall (0,1] angeblich genau dann gleichmäßig
> stetig, wenn f(x) konvergiert. Meine Intuition sagt mir,
> dass diese Aussage falsch ist, kann ich das mit einem
> Gegenbeispiel widerlegen?

Deine Intuition ist dann wohl falsch.

Beachte: wenn der Grenzwert existiert, kannst du $f$ stetig auf $[0, 1]$ fortsetzen, und dieses Intervall ist kompakt.

Fuer die Rueckrichtung zeig erstmal, dass $f$ beschraenkt ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]