gleichm. Konvergenz/Fkt.folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Die Funktionen [mm] f_n [/mm] auf [mm] \IR [/mm] seien definiert durch [mm] f_n(x):= \bruch{x^{2n}}{1+x^{2n}}. [/mm] Zeige, dass [mm] f_n [/mm] für jedes feste q [mm] \in [/mm] (0,1) auf den Mengen
{|x| [mm] \le [/mm] q} und {|x| [mm] \ge \bruch{1}{q} [/mm] } gleichmäßig konvergiert |
huhu,
ich komm hier nicht ganz mit den Mengen klar. Muss ich hier bei meinem [mm] \varepsilon [/mm] Beweis Fallunterschiede machen? denn es kann ja z.b. 0<x<1^sein oder auch x=2 ! daher versch. Grenzfunktionen. z.b.:
x>1 (z.b. 2)
[mm] |\bruch{x^{2n}}{1+x^{2n}} [/mm] - 1|
erweitert:
<=> [mm] |\bruch{x^{2n}}{1+x^{2n}} -\bruch{1+x^{2n}}{1+x^{2n}}|
[/mm]
<=> [mm] |\bruch{x^{2n}-1-x^{2n}}{1+x^{2n}}|
[/mm]
<=> [mm] |\bruch{-1}{1+x^{2n}}|
[/mm]
= [mm] \bruch{1}{1+x^{2n}}
[/mm]
[mm] \le \bruch{1}{x^{2n}} [/mm] < [mm] \varepsilon [/mm] (soll es ja sein^^)
da der natürliche Logarithmus stark mon steigend ist, gilt die Ungleichung:
[mm] ln(1/\varepsilon) [/mm] < 2n [mm] \* [/mm] ln(x)
<=> [mm] \bruch{ln(1/\varepsilon)}{ln(x)\*2} [/mm] < n
jetzt meine eigentliche Frage: wie kann ich das auf meine Mengen zurückführen? Dass es gerade für die gelten soll.
LG,
Eve
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:26 Do 19.04.2012 | Autor: | Marcel |
Hallo,
> Die Funktionen [mm]f_n[/mm] auf [mm]\IR[/mm] seien definiert durch [mm]f_n(x):= \bruch{x^{2n}}{1+x^{2n}}.[/mm]
> Zeige, dass [mm]f_n[/mm] für jedes feste q [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
(0,1) auf den Mengen
>
> {|x| [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
q} und {|x| [mm]\ge \bruch{1}{q}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} gleichmäßig
> konvergiert
> huhu,
>
> ich komm hier nicht ganz mit den Mengen klar.
naja, die Aufgabe kann man so formulieren. Im Endeffekt kann man genauso sagen:
1.) Zeige, dass $(f_n)_n$ auf jeder der Mengen $\{-r \le x \le r: x \in \IR\}=[-r,\;r]$ mit einem $0 < r < 1\,$ glm. konvergiert.
2.) Zeige, dass $(f_n)_n$ auf jeder der Mengen $\{|x| \ge s: x \in \IR\}=\IR \setminus [-s,\;s]$ mit einem $s > 1\,$ glm. konvergiert.
Das ist eine vielleicht ein wenig verständlichere Umformulierung der Aufgabe!
> Muss ich hier
> bei meinem [mm]\varepsilon[/mm] Beweis Fallunterschiede machen? denn
> es kann ja z.b. 0<x<1^sein oder auch x=2 ! daher versch.
> Grenzfunktionen. z.b.:
>
> x>1 (z.b. 2)
Bei glm. Kgz. soll/darf das [mm] $N=N_\varepsilon$ [/mm] nicht mehr von der betrachteten Stelle [mm] $x\,$ [/mm] abhängen! Es ist sozusagen "universell für alle Stellen des Definitionsbereichs einsetzbar"!
> [mm]|\bruch{x^{2n}}{1+x^{2n}}[/mm] - 1|
> erweitert:
> <=> [mm]|\bruch{x^{2n}}{1+x^{2n}} -\bruch{1+x^{2n}}{1+x^{2n}}|[/mm]
>
> <=> [mm]|\bruch{x^{2n}-1-x^{2n}}{1+x^{2n}}|[/mm]
> <=> [mm]|\bruch{-1}{1+x^{2n}}|[/mm]
> = [mm]\bruch{1}{1+x^{2n}}[/mm]
> [mm]\le \bruch{1}{x^{2n}}[/mm] < [mm]\varepsilon[/mm] (soll es ja sein^^)
>
> da der natürliche Logarithmus stark mon steigend ist, gilt
> die Ungleichung:
> [mm]ln(1/\varepsilon)[/mm] < 2n [mm]\*[/mm] ln(x)
> <=> [mm]\bruch{ln(1/\varepsilon)}{ln(x)\*2}[/mm] < n
>
> jetzt meine eigentliche Frage: wie kann ich das auf meine
> Mengen zurückführen? Dass es gerade für die gelten
> soll.
Dass [mm] $(f_n)_n$ [/mm] nicht glm. auf einer Menge [mm] $M\,$ [/mm] konvergiert, die ein (nichteinpunktiges) Intervall $I [mm] \subseteq [/mm] M$ enthält mit $1 [mm] \in I\,$ [/mm] oder $-1 [mm] \in I\,,$ [/mm] sollte Dir klar sein:
Denn betrachtest Du mal die [mm] $f_n$ [/mm] alle auf [mm] $\IR$ [/mm] definiert und dann die Grenzfunktion auf [mm] $\IR:$ [/mm] An welchen Stellen ist diese unstetig?
Und jetzt mache Dir erstmal klar, was Du eigentlich zu beweisen hast. Und ein weiterer Tipp:
Plotte Dir mal die [mm] $f_n$ [/mm] (ruhig auf [mm] $\IR$ [/mm] definiert). Betrachte etwa die Stelle [mm] $x=s=1.01\,.$ [/mm] (Zeichne/Plotte die zur [mm] $y\,$-Achse [/mm] parallele Gerade durch [mm] $x=s=1.01\,$!) [/mm]
Und jetzt schau' mal, was die Graphen der [mm] $f_n$ [/mm] machen, wenn [mm] $n\,$ [/mm] immer größer wird:
"Der Anteil der Graphen der [mm] $f_n$ [/mm] (rechts von [mm] $s=1.01\,$), [/mm] wo's starke Funktionsänderungen gibt (fast eine sehr steile Gerade) - der "biegt" sich immer weiter nach links." (Grob gesagt: "Der größte Teil dieses "steile-Geraden-Anteils" wird immer mehr in den Bereich zwischen [mm] $x=1\,$ [/mm] und [mm] $x=s=1.01\,$ [/mm] gesperrt!")
Und natürlich:
Du hast nun zu zeigen:
Ist $s > [mm] 1\,:$
[/mm]
1.) pktw. Kgz. (hier braucht man das [mm] $s\,$ [/mm] nicht):
Zeige, dass [mm] $f_n(x) \to [/mm] 1$ für alle $|x| > [mm] 1\,.$ [/mm] Hier kann man sogar o.E. sogar einfach nur die $x > [mm] 1\,$ [/mm] betrachten, denn die [mm] $f_n\,$ [/mm] sind eh symmetrisch.
2.) Nun zur glm. Konvergenz:
Zeige: Zu jedem [mm] $\epsilon [/mm] > 0$ existiert ein [mm] $N=N_\epsilon\,,$ [/mm] so dass für alle $|x| > [mm] s\,$ [/mm] (oder auch wieder nur $x > [mm] s\,$ [/mm] wegen der Symmetrie) folgt, dass [mm] $|f_n(x)-1| [/mm] < [mm] \epsilon$ [/mm] für alle $n [mm] \ge N\,.$
[/mm]
Wie gesagt: Das [mm] $N\,$ [/mm] darf NICHT von [mm] $x\,$ [/mm] abhängen. Und es muss auch nicht das kleinste zu [mm] $\epsilon$ [/mm] passende [mm] $N\,$ [/mm] sein. Vielleicht kann man sogar auch die strenge Monotonie der [mm] $(f_n)_n$ [/mm] etwa auf $x > s$ ausnutzen (diese kann man mit der Ableitung begründen) - und halt das Wissen, dass die pktw. Kgz. gegen [mm] $1\,$ [/mm] vorhanden ist.
Denn grob gesagt:
Wenn ich eine Stelle [mm] $x_0 [/mm] > 1$ betrachte, dann weiß ich, dass [mm] $f_n(x_0) \to 1\,.$ [/mm] Diese bekomme ich kleiner [mm] $\epsilon$ [/mm] für ein passendes [mm] $N\,.$ [/mm] Mit ein bisschen Argumentation begründet man, dass alle Stellen $x > [mm] x_0$ [/mm] dann einen Funktionswert [mm] $f(x)\,$ [/mm] mit [mm] $f(x_0) \le [/mm] f(x) [mm] \le [/mm] 1$ haben.
Und wenn nun $s > 1$ ist, dann wähle ich halt das [mm] $N\,$ [/mm] zu [mm] $x_0=s$ [/mm] so, dass [mm] $|1-f_n(s)| [/mm] < [mm] \varepsilon$ [/mm] ab diesem [mm] $N\,.$ [/mm] Und das begründet dann mit dem obigen, dass auch [mm] $|f_n(x)-1| [/mm] < [mm] \varepsilon$ [/mm] für alle $x [mm] \ge s\,.$ [/mm] Und beachte: Das [mm] $N\,$ [/mm] hängt zwar von [mm] $s\,$ [/mm] und damit von der betrachteten Definitionsmenge ab, aber es variiert nicht mehr, wenn man eine andere Stelle [mm] $x\,$ [/mm] des Definitionsbereichs betrachtet.
Gruß,
Marcel
|
|
|
|
|
supi danke Marcel^^
man hatte ich Probleme mit den Mengen... ;P
Lg zurück,
Eve
|
|
|
|