matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungengleichgradige Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - gleichgradige Stetigkeit
gleichgradige Stetigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichgradige Stetigkeit: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:01 Fr 11.06.2010
Autor: buef

Aufgabe
Untersuchen Sie die folgenden Mengen auf gleichgradige Stetigkeit:

i)   {x [mm] \mapsto x^n [/mm] | n [mm] \in \IN [/mm] } [mm] \subset [/mm] C([0,1])
ii)   {x [mm] \mapsto x^n/n [/mm] | n [mm] \in \IN [/mm] } [mm] \subset [/mm] C([0,1])
iii)   {x [mm] \mapsto x^n/n [/mm] | n [mm] \in \IN [/mm] } [mm] \subset [/mm] C([0,2])

Habe schon angefangen. Bitte kontrollieren

i) ZZ [mm] |x-x_0|<=\delta \Rightarrow |x^n [/mm] - [mm] x_0^n|<=\epsilon [/mm]

Sei [mm] b\in (0,1-x_0) [/mm] so ist x [mm] \in [x_0-b,x_0+b] [/mm]

[mm] \Rightarrow |x^n -x_0^n [/mm] | =  |x - [mm] x_0| \summe_{k=0}^{n-1}x^kx^{n-1-k} [/mm] <= [mm] |x-x_0|\summe_{k=0}^{n-1}(x_0+b)^{n-1} [/mm] <= [mm] |x-x_0|n(x_0+b)^{n-1} [/mm]

Wähle nun [mm] \delta [/mm] = [mm] \eps/p [/mm] wobei [mm] p:=sup{|x-x_0|n(x_0-b)^{n-1}} [/mm]

[mm] \Rightarrow \delta [/mm] = [mm] \bruch{1}{n(x_0+b)^{n-1}} [/mm]

ii) ZZ [mm] |x-x_0|<=\delta \Rightarrow |\bruch{x^n}{n} [/mm] - [mm] \bruch{x_0^n}{n}|<=\epsilon [/mm]
Sei [mm] b\in (0,1-x_0) [/mm] so ist x [mm] \in [x0-b,x_0+b] [/mm]

[mm] \Rightarrow |\bruch{x^n}{n}-\bruch{x_0^n}{n}|=\bruch{1}{n}|x^n -x_0^n|<=(x-x_0)(x-b)^{n-1} [/mm]

Wähle nun [mm] \delta [/mm] = [mm] \epsilon/p [/mm] wobei [mm] p:=sup{|x-x_0|(x_0-b)^{n-1}}=\bruch{1}{4} [/mm]

[mm] \Rightarrow \delta=4\epsilon [/mm]

iii) Würde ich später posten, wenn die i und ii richtig ist!
Besten Dank schonmal fürs rüber schauen!

        
Bezug
gleichgradige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Fr 11.06.2010
Autor: steppenhahn

Hallo!

> i) ZZ [mm]|x-x_0|<=\delta \Rightarrow |x^n[/mm] - [mm]x_0^n|<=\epsilon[/mm]

Ja. Hier ist aber zu bemerken: [mm] \delta [/mm] darf weder von [mm] x,x_{0} [/mm] noch von n abhängen, sondern NUR von [mm] \varepsilon [/mm] !
Genauer lautet die Definition der gleichgradigen Stetigkeit von [mm] f_n [/mm] in einem Intervall I:

[mm] $\forall \varepsilon [/mm] > 0: [mm] \exists \delta_{\varepsilon} [/mm] > 0: [mm] \forall n\in\IN:\forall x,x_{0}\in [/mm] I: [mm] |x-x_{0}|<\delta_{\varepsilon}\Rightarrow |f_n(x)-f_n(x_{0})|<\varepsilon$ [/mm]

> Sei [mm]b\in (0,1-x_0)[/mm] so ist x [mm]\in [x_0-b,x_0+b][/mm]

Ich verstehe nicht, was du mit diesem b bezweckst.

> [mm]\Rightarrow |x^n -x_0^n[/mm] | =  |x - [mm]x_0| \summe_{k=0}^{n-1}x^kx^{n-1-k}[/mm]
> <= [mm]|x-x_0|\summe_{k=0}^{n-1}(x_0+b)^{n-1}[/mm] <=
> [mm]|x-x_0|n(x_0+b)^{n-1}[/mm]
>  
> Wähle nun [mm]\delta[/mm] = [mm]\eps/p[/mm] wobei
> [mm]p:=sup{|x-x_0|n(x_0-b)^{n-1}}[/mm]
>  
> [mm]\Rightarrow \delta[/mm] = [mm]\bruch{1}{n(x_0+b)^{n-1}}[/mm]

Wie gesagt, das funktioniert so nicht, weil [mm] \delta [/mm] nicht von n und x abhängen darf. Die Idee, die du in deinem Beweis aber anbringst, ist aber schon ein guter Ansatz: $f(x) = [mm] x^{n}$, [/mm] sei [mm] $\varepsilon [/mm] > 0$ beliebig. Dann:

[mm] $|f_n(x)-f_n(x_{0})| [/mm] = [mm] |x^{n}-x_{0}^{n}| [/mm] = [mm] |x-x_{0}|*\left|\sum_{k=0}^{n-1}x^{k}*x_{0}^{(n-1)-k}\right| \le |x-x_{0}|*\sum_{k=0}^{n-1}|x|^{k}*|x_{0}|^{(n-1)-k}$ [/mm]

Nun nutzen wir aus, dass I = [0,1], also $|x| < 1, [mm] |x_{0}| [/mm] < 1$:

[mm] $\le |x-x_{0}|*\sum_{k=0}^{n-1}1 \le |x-x_{0}|*(n-1)$ [/mm]

Nun müssten wir [mm] \delta [/mm] immer noch von n abhängig wählen. In Anbetracht, dass ich aber oben nur "scharfe" Abschätzungen gemacht habe, liegt nun der Gedanke nahe, dass [mm] $x^{n}$ [/mm] gar nicht gleichgradig stetig ist. Überlege also, ob du mit Hilfe der Definition von gleichgradiger Stetigkeit widerlegen kannst, dass [mm] x^{n} [/mm] gleichgradig stetig ist.

Den obigen Beweis kannst du aber womöglich für (ii) und vielleicht (iii) benutzen.

> ii) ZZ [mm]|x-x_0|<=\delta \Rightarrow |\bruch{x^n}{n}[/mm] -
> [mm]\bruch{x_0^n}{n}|<=\epsilon[/mm]
>  Sei [mm]b\in (0,1-x_0)[/mm] so ist x [mm]\in [x0-b,x_0+b][/mm]
>  
> [mm]\Rightarrow |\bruch{x^n}{n}-\bruch{x_0^n}{n}|=\bruch{1}{n}|x^n -x_0^n|<=(x-x_0)(x-b)^{n-1}[/mm]
>  
> Wähle nun [mm]\delta[/mm] = [mm]\epsilon/p[/mm] wobei
> [mm]p:=sup{|x-x_0|(x_0-b)^{n-1}}=\bruch{1}{4}[/mm]

Wie kommst du darauf, dass das 1/4 ist?

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]