matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpergleiche Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - gleiche Ordnung
gleiche Ordnung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleiche Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Fr 19.12.2014
Autor: T_sleeper

Aufgabe
Sei $G$ eine endliche zyklische Gruppe und $a,b$ zwei Elemente von $G$ mit derselben Ordnung. Gilt [mm] $\langle [/mm] a [mm] \rangle [/mm] = [mm] \langle [/mm] b [mm] \rangle$? [/mm]

Hallo,

die Frage hat vollgenden Hintergrund: Mein Dozent behauptet, die Aussage sei valide. Ich habe aber mit einem Programm ein Gegenbeispiel gefunden. Trotzdem ist der Dozent nicht von seiner Meinung abzubringen.
Irrt sich nun das Programm? Einen formalen Beweis davon hab ich naemlich noch nicht gesehen.



        
Bezug
gleiche Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Fr 19.12.2014
Autor: UniversellesObjekt

Hallo,

Die Aussage stimmt, denn zwei Untergruppen derselben Ordnung einer zyklischen Gruppe stimmen überein. Da zwei Elemente derselben Ordnung Untergruppen mit derselben Ordnung erzeugen, folgt die Behauptung. Das sieht man so:

Zyklische Gruppen sind isomorph zu [mm] $\IZ/n\IZ [/mm] $. Allgemein sei $ U $ eine Untergruppe von $ G/N $. Es sei [mm] $G\xrightarrow [/mm] {\ \ f\ \ } G/N $ die kanonische Projektion. Dann ist $ [mm] U=f^{-1}(U)/N [/mm] $. Dies zeigt, dass Untergruppen von $ G/N $ von der Form $ H/N $ mit $ [mm] N\subseteq H\subseteq [/mm] G $ sind.

Die Untergruppen von [mm] $\IZ/n\IZ [/mm] $ sind also von der Form $ [mm] H/n\IZ [/mm] $ mit $ [mm] n\IZ\subseteq H\subseteq \IZ [/mm] $. Eine Untergruppe von [mm] $\IZ [/mm] $ ist von der Form $ [mm] k\IZ [/mm] $. Damit $ [mm] n\IZ\subseteq k\IZ [/mm] $ gilt, muss $ n $ ein Vielfaches von $ k $ sein und es gilt $ [mm] U=k\IZ/n\IZ [/mm] $. $ U $ hat dann die Ordnung $ n/k $, es gilt $ [mm] k=n/\operatorname{ord} [/mm] U$, also ist $ [mm] U=k\IZ/n\IZ=(n/\operatorname [/mm] {ord} [mm] U)\IZ/n\IZ [/mm] $ allein durch die Ordnung bestimmt.

Welches Gegenbeispiel hat denn dein Programm ausgegeben?

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]