matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieggt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - ggt
ggt < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:08 Sa 12.05.2007
Autor: KommissarLachs

Aufgabe 1
Seien m, n [mm] \in \IN. [/mm]
a) zu zeigen: ggt (m,n) = ggt (m, n-m)
b) Sei r>0 der Rest, der bei Division mit Rest von n durch m entsteht. Dann gilt: ggt (m,n)= ggt (m,r)


Aufgabe 2
a) [mm] a,b\in \IZ \setminus [/mm] {0} => ggt a,b)= max({t| t ist Teiler von a und b}).
b) [mm] a,b\in \IN [/mm] => ggt (a,b) [mm] \le [/mm] ggt (a+b, a-b)

Hallo zusammen,

ich stehe hier vor einigen Problemen. Hier die Probleme im Detail:
zu 1.a): mir fehlt ein konkrter Ansatz
zu 1.b): ich hab gezeigt, dass [mm] T(m)\cap [/mm] T(n) = [mm] T(m)\cap [/mm] T(r) ist. Wie bekomme ich jetzt den ggt?

zu 2 a): [mm] ggt\le [/mm] max hab ich, mir fehlt max [mm] \le [/mm] ggt
zu 2 b): hier weiß ich gar nicht, wie ich anfangen soll.

Es wäre echt super, wenn mir jemand helfen könnte. Ein oder zwei Tipps wären schon hilfreich. Vielen Dank, der KommissarLachs

PS: Ich habe diese Fragen in keinem anderen Forum gestellt.

        
Bezug
ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 12.05.2007
Autor: Karsten0611

Hallo KommissarLachs!

Hier schon mal was zur ersten Aufgabe:

> 1. Seien m, n [mm]\in \IN.[/mm]
>  a) zu zeigen: ggt (m,n) = ggt (m,
> n-m)
>  b) Sei r>0 der Rest, der bei Division mit Rest von n durch
> m entsteht. Dann gilt: ggt (m,n)= ggt (m,r)

a) Die Idee ist, zu zeigen, daß [mm]ggT (m,n) | ggT (m, n-m)[/mm] und [mm]ggT (m,n-m) | ggT (m, n)[/mm]. Dann müssen beide ggTs übereinstimmen.

b) ObdA sei [mm]n \ge m[/mm] (sonst vertausche einfach mit der Regel [mm]ggT(a,b) = ggT(b,a)[/mm]). Man kann n dann schreiben als [mm]n = km+r[/mm] mit geeignetem [mm]k,r \in \IZ[/mm] bzw. sogar [mm]k,r \in \IN[/mm]. Durch k-maliges Anwenden von a) erhält man:

[mm]ggT (m,n) = ggT (m, km+r) = ggT (m, (k-1)m+r) = ... = ggT (m, r)[/mm]

LG
Karsten

Bezug
        
Bezug
ggt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:16 Sa 12.05.2007
Autor: MicMuc

Aufgabe 1 solltest Du wohl elementar lösen, d.h. es wäre hilfreich, wie Ihr

ggt(n,m) für n,m [mm] $\in$ [/mm] N definiert habt.

[Deine Anmerkung lassen übrigens darauf schliessen, dass ihr den Schnitt der Teilermengen betrachtet und dort höchstwahrscheinlich die größte Zahl nehmt ... ???]

Karstens-Ansatz benutzt die Definition

ggT(n,m) = d , so gilt:

Jeder Teiler von n und m teilt d.

(Die Definition hat den Vorteil, dass sie auch in anderen [bestimmten] Ringen Sinn ergibt.
Nachteil: d ist dann aber nur bis auf die Multiplikation mit Einheiten des Ringes eindeutig ...)

Es gibt übrigens auch Definitionen die mit den Gruppen $Z / [mm] Z_{n}$ [/mm] und $z / [mm] Z_{m}$ [/mm] bzw. mit der Guppe, die von n und m erzeugt wird arbeiten ...



Bezug
        
Bezug
ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Sa 12.05.2007
Autor: Karsten0611

Zur Aufgabe 2b)

>  b) [mm]a,b\in \IN[/mm] => ggt (a,b) [mm]\le[/mm] ggt (a+b, a-b)

genügt m.E. folgendes:

Sei t=ggT(a,b), dann gilt t|a und t|b. Damit hat man unmittelbar t|(a+b) und  t|(a-b) Somit ist

t [mm] \in [/mm] {s| s ist Teiler von (a+b) und (a-b)}

Ist r = ggT(a+b,a-b), so gilt nach a):

r = max({s| s ist Teiler von (a+b) und (a-b)}) [mm] \ge [/mm] t.

Bezug
        
Bezug
ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Sa 12.05.2007
Autor: Karsten0611

So, nun noch was zur 2a)

> a) [mm]a,b\in \IZ \setminus[/mm] {0} => ggt a,b)= max({t| t ist
> Teiler von a und b}).

Vorweg: Der ggT zweier Zahlen ist immer eine positive ganze Zahl.

Sei [mm]d = ggT(a,b)[/mm] und T=max({t| t ist Teiler von a und b}). Klar ist [mm]d \in T[/mm]. Nach dem Lemma von Bézout gibt es ganze Zahlen r und s mit [mm]d = ggT(a,b) = ra + sb[/mm]. Ist e nun ein anderer Teiler aus T, so gilt e | a und e | b. Offenbar gilt dann auch [mm]e | ra+sb[/mm] und daher e|d. Dann muß aber e [mm] \le [/mm] d sein.

HTH
Karsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]