matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikggT, teilerfremd
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - ggT, teilerfremd
ggT, teilerfremd < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT, teilerfremd: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Fr 20.03.2009
Autor: DyingSoul

Hi,

ich bin in einem Skript auf eine Aussage ohne Beweis gestoßen, die anscheinend ein grundlegendes Ergebnis der diskreten Mathematik ist. Mir ist allerdings nicht klar warum das so gilt:

Für [mm] x,y \in \IN [/mm] mit [mm] ggT(x,y)=1 [/mm] existiert ein [mm] t_0 \in \IN [/mm] so dass für jedes [mm] t \ge t_0 [/mm] zwei Zahlen [mm] a,b \in \IN [/mm] existieren, so dass  [mm] t = ax+by [/mm].

Weiß jemand wieso das das gilt?

Danke und Gruß



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
ggT, teilerfremd: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 20.03.2009
Autor: abakus


> Hi,
>  
> ich bin in einem Skript auf eine Aussage ohne Beweis
> gestoßen, die anscheinend ein grundlegendes Ergebnis der
> diskreten Mathematik ist. Mir ist allerdings nicht klar
> warum das so gilt:
>  
> Für [mm]x,y \in \IN [/mm] mit [mm]ggT(x,y)=1[/mm] existiert ein [mm]t_0 \in \IN [/mm]
> so dass für jedes [mm]t \ge t_0[/mm] zwei Zahlen [mm]a,b \in \IN [/mm]
> existieren, so dass  [mm]t = ax+by [/mm].
>  
> Weiß jemand wieso das das gilt?

Ja.
Gruß Abakus


Spaß beiseite. Ohne die Einschränkung "natürliche Zahlen" kann man das [mm]t \ge t_0[/mm] weglassen, denn für teilerfremde ganze Zahlen x, y ist jede Zahl t darstellbar.
Nimm dir mal als Beispiel x=3, y=5.
Die Zahlen
1*3+1*5=8
1*3+2*5=13 und
1*3+3*5=18 lassen bei Teilung durch 3 die Reste 2, 1 bzw. 0.
Wenn ich jetzt zu 1*3+1*5=8 ein beliebige ganzzahlige Vielfache von 3 addiere, erhalte ich ALLE ganzen Zahlen der Form 3k+2.
Wenn ich zu 1*3+2*5=3 ein beliebige ganzzahlige Vielfache von 3 addiere, erhalte ich ALLE ganzen Zahlen der Form 3k+1.
Wenn ich zu 1*3+5*5=18 ein beliebige ganzzahlige Vielfache von 3 addiere, erhalte ich ALLE ganzen Zahlen der Form 3k.
So kann ich alle ganzen Zahlen in der Form a*3 + b*5 darstellen.

Wenn nun negative Summanden nicht zugelassen sind, gibt es am Anfang ein paar Lücken.
Möglich sind (falls die 1 als kleinste natürliche Zahl gilt)
3, 8, 13, 18, 23,...
5, 10, 15, 20,...
3+3=6, 11, 16, 21,
3+3+3=9, 14, 19, ...

Mit den Zahlen 8, 9 und 10 hat man erstmals 3 aufeinanderfolgende Zahlen, dann kann man durch Addition von 3 auch alle weiteren nat. Zahlen erzeugen. Ab [mm] t_0=8 [/mm] wären also in diesem Beispiel alle nat. Zahlen als Summe von  Vielfachen von 3 und 5 darstellbar.
Gruß Abakus


>  
> Danke und Gruß
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
ggT, teilerfremd: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Fr 20.03.2009
Autor: DyingSoul

Ok, ist einleuchtend, danke dir!!

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]