matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktion"geschlossener" Ausdruck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - "geschlossener" Ausdruck
"geschlossener" Ausdruck < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"geschlossener" Ausdruck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 So 21.10.2012
Autor: mala11

Aufgabe
Bestimmen Sie einen "geschlossenen" Ausdruck für

[mm] \summe_{k=1}^{n}(1/(k(k+1)))=(1/2)+(1/6)+...+(1/(n(n+1))) [/mm]

Hinweis: Werten Sie die Summen für n= 1,2,3,... aus. Stellen Sie dann eine Vermutung auf und beweisen Sie die vermutete Formel.

Hallo,

ich habe überhaupt keinen Schimmer wie ich anfangen soll bei dieser Aufgabe. Bitte helft mir.

LG
mala11

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
"geschlossener" Ausdruck: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 So 21.10.2012
Autor: Axiom96


> Bestimmen Sie einen "geschlossenen" Ausdruck für
>  
> [mm]\summe_{k=1}^{n}(1/(k(k+1)))=(1/2)+(1/6)+...+(1/(n(n+1)))[/mm]
>  
> Hinweis: Werten Sie die Summen für n= 1,2,3,... aus.
> Stellen Sie dann eine Vermutung auf und beweisen Sie die
> vermutete Formel.
>  Hallo,
>  
> ich habe überhaupt keinen Schimmer wie ich anfangen soll
> bei dieser Aufgabe. Bitte helft mir.
>  
> LG
>  mala11
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,

Mit geschlossener Ausdruck ist eine Formulierung des Termes gemeint, der ohne Summenzeichen auskommt. Anfangen solltest du genau so, wie es schon in der Aufgabe steht. Setze doch einmal einige natürliche Zahlen in den Ausdruck ein. Die Vermutung, die der Ausgabensteller meint ist ziemlich einfach zu kennen, wenn man mal ein paar Zahlen eingesetzt hat. Wenn du eine Vermutung hast, dann kannst du dir weitere Gedanken machen. Auch wenn du ja schon zu wissen scheinst, mit welcher Beweismethode du vorgehen musst, immerhin hast du die Frage ja ins Induktions-forum gepostet.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]