matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikgeometrische vert./ E(X)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - geometrische vert./ E(X)
geometrische vert./ E(X) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische vert./ E(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 30.05.2008
Autor: Igor1

Hallo,

ich habe eine Frage zu der folgenden Internetseite

[]wikipedia -geometrische Verteilung- Erwartungswert

Beim Punkt 2.1 des Inhaltsverzeichnisses dort (Eigenschaften - Erwartungswert) ist mir nicht klar , was
[mm] \bruch{d}{d(1-p)} [/mm] in der Herleitungsgleichung ( die zweite Teilgleichung) bedeutet ...?

Danke schön

Gruss
Igor

        
Bezug
geometrische vert./ E(X): Direkter Weg
Status: (Antwort) fertig Status 
Datum: 12:46 Sa 31.05.2008
Autor: Infinit

Hallo Igor,
mit diesem Ausdruck ist der Differentialquotient in Hinblick auf das Summenargument gemeint. Da die Erwartungswertbildung ein linearer Vorgang ist, kann man so was machen. Es ist jedoch aus meiner Sicht recht tricky, denn auf diese Idee kommt man eigentlich nur, wenn man das Ergebnis schon kennt.
Es gibt auch einen direkten Weg und die paar dazugehörigen Zeilen an Rechnung findest Du []hier.
Viele Grüße,
Infinit

Bezug
        
Bezug
geometrische vert./ E(X): Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 So 01.06.2008
Autor: felixf

Hallo Igor

> ich habe eine Frage zu der folgenden Internetseite
>
> []wikipedia -geometrische Verteilung- Erwartungswert
>  
> Beim Punkt 2.1 des Inhaltsverzeichnisses dort
> (Eigenschaften - Erwartungswert) ist mir nicht klar , was
> [mm]\bruch{d}{d(1-p)}[/mm] in der Herleitungsgleichung ( die zweite
> Teilgleichung) bedeutet ...?

Das ist sozusagen die Ableitung nach der Unbestimmten $1 - p$: wenn du die Gleichung so umschreibst, dass du $1 - p$ durch $y$ ersetzt, dann steht da [mm] $\frac{d}{d y} \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=1}^\infty [/mm] k [mm] y^{k-1}$. [/mm]

Soweit ok?

Beim darauf folgenden Gleichheitszeichen ersetzt man die Ableitung nach $1 - p$ dann durch eine Ableitung nach $p$: das ist sozusagen die Kettenregel. Sagen wir mal du hast eine Funktion $f(y)$, und du hast $y = 1 - p$. Du weisst jetzt, dass [mm] $\frac{d}{d y}f(y) [/mm] = g(y)$ ist. Also ist [mm] $\frac{d}{d p} [/mm] f(y) = [mm] \frac{d}{d p} [/mm] f(1 - p) = f'(1 - p) (1 - p)' = -f'(1 - p)$. Wenn du das jetzt auf $f(y) = [mm] \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=0}^\infty y^k [/mm] - 1$ anwendest, folgt daraus genau das was da steht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]