matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihengeometr. Reihe mit Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - geometr. Reihe mit Variablen
geometr. Reihe mit Variablen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometr. Reihe mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 10.03.2013
Autor: Mathe-Andi

Hallo,

Analog zu meiner ersten Aufgabe mit

[mm] \summe_{n=0}^{\infty}(\bruch{1}{3})^{n} [/mm]

ändert sich doch nichts, wenn ich nun die Reihe

[mm] \summe_{n=0}^{\infty}(\bruch{1}{3q})^{n} [/mm]

habe. q ist doch nur Platzhalter für eine Zahl und egal wie groß diese ist, der Quotient [mm] \bruch{1}{3q} [/mm] ist stets <1. Bedingung: [mm] q\not=0 [/mm]

Nur den genauen Grenzwert ausrechnen, kann ich nicht. Oder seh ich das falsch?

Gruß, Andreas

        
Bezug
geometr. Reihe mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 So 10.03.2013
Autor: MathePower

Hallo Mathe-Andi,

> Hallo,
>  
> Analog zu meiner ersten Aufgabe mit
>  
> [mm]\summe_{n=0}^{\infty}(\bruch{1}{3})^{n}[/mm]
>  
> ändert sich doch nichts, wenn ich nun die Reihe
>  
> [mm]\summe_{n=0}^{\infty}(\bruch{1}{3q})^{n}[/mm]
>  
> habe. q ist doch nur Platzhalter für eine Zahl und egal
> wie groß diese ist, der Quotient [mm]\bruch{1}{3q}[/mm] ist stets
> <1. Bedingung: [mm]q\not=0[/mm]
>  
> Nur den genauen Grenzwert ausrechnen, kann ich nicht. Oder
> seh ich das falsch?
>  


Eine reelle Zahl als Grenzwert wirst Du nicht erhalten,
vielmehr ist der Grenzwert von q abhängig.


> Gruß, Andreas


Gruss
MathePower

Bezug
                
Bezug
geometr. Reihe mit Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 So 10.03.2013
Autor: abakus


> Hallo Mathe-Andi,
>  
> > Hallo,
>  >  
> > Analog zu meiner ersten Aufgabe mit
>  >  
> > [mm]\summe_{n=0}^{\infty}(\bruch{1}{3})^{n}[/mm]
>  >  
> > ändert sich doch nichts, wenn ich nun die Reihe
>  >  
> > [mm]\summe_{n=0}^{\infty}(\bruch{1}{3q})^{n}[/mm]
>  >  
> > habe. q ist doch nur Platzhalter für eine Zahl und egal
> > wie groß diese ist, der Quotient [mm]\bruch{1}{3q}[/mm] ist stets
> > <1. Bedingung: [mm]q\not=0[/mm]

Hallo,
überdenke mal exemplarisch den Fall [mm] $q=\frac13$. [/mm]
Gruß Abakus

>  >  
> > Nur den genauen Grenzwert ausrechnen, kann ich nicht. Oder
> > seh ich das falsch?
>  >  
>
>
> Eine reelle Zahl als Grenzwert wirst Du nicht erhalten,
>  vielmehr ist der Grenzwert von q abhängig.
>  
>
> > Gruß, Andreas
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
geometr. Reihe mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 So 10.03.2013
Autor: Mathe-Andi

Danke abakus für den Hinweis,

das heißt [mm] q=\bruch{1}{3} [/mm] ist auch nicht zugelassen, sprich [mm] q\not=\bruch{1}{3}, [/mm] da der Quotient [mm] k=\bruch{1}{3q} [/mm] aufgrund [mm] s=\bruch{1}{1-k} [/mm] nicht 1 sein darf. Richtig?

Gruß, Andreas

Bezug
                                
Bezug
geometr. Reihe mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 So 10.03.2013
Autor: fred97

Zu $ [mm] \summe_{n=0}^{\infty}(\bruch{1}{3q})^{n} [/mm] $ :

Wir setzen [mm] p:=\bruch{1}{3q} [/mm]


[mm] \summe_{n=0}^{\infty}p^n [/mm] konvergiert [mm] \gdw [/mm] |p|<1

In diesem Fall ist [mm] \summe_{n=0}^{\infty}p^n= \bruch{1}{1-p} [/mm]


Jetzt Du.

FRED

Bezug
                                        
Bezug
geometr. Reihe mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 So 10.03.2013
Autor: Mathe-Andi

Hallo,

ja [mm] p\not=1 [/mm] sonst teile ich durch Null. Somit muss auch [mm] q\not=\bruch{1}{3} [/mm] sein.

Gruß, Andreas

Bezug
                                                
Bezug
geometr. Reihe mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 10.03.2013
Autor: steppenhahn

Hallo,


> ja [mm]p\not=1[/mm] sonst teile ich durch Null. Somit muss auch
> [mm]q\not=\bruch{1}{3}[/mm] sein.

Ja, unter anderem.


Fred schrieb (mit $p = [mm] \frac{1}{3q}$ [/mm] ):

[mm] $\sum_{k=0}^{\infty}p^{k}$ [/mm] konvergent  [mm] \gdw [/mm]  $|p| < 1$.

Entsprechend konvergiert die Reihe nur für [mm] $\left|\frac{1}{3q}\right| [/mm] = |p| < 1$, also für welche q?

Nur für DIESE q kannst du überhaupt die Formel [mm] $\sum_{k=0}^{\infty}p^{k} [/mm] = [mm] \frac{1}{1-p}$ [/mm] benutzen!


Viele Grüße,
Stefan

Bezug
                                                        
Bezug
geometr. Reihe mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 10.03.2013
Autor: Mathe-Andi

Achso jetzt sehe ich, was ihr meint:

[mm] \bruch{1}{3q}<1 [/mm]

[mm] \bruch{1}{q}<3 [/mm]

[mm] q>\bruch{1}{3} [/mm]

Da hab ich wohl gepennt. Danke!

Gruß, Andreas

Bezug
                                                                
Bezug
geometr. Reihe mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 So 10.03.2013
Autor: steppenhahn

Hallo,


> Achso jetzt sehe ich, was ihr meint:
>  
> [mm]\bruch{1}{3q}<1[/mm]
>  
> [mm]\bruch{1}{q}<3[/mm]
>  
> [mm]q>\bruch{1}{3}[/mm]

Das ist fast richtig, du hast die Beträge vergessen. Es muss lauten $|q| > [mm] \frac{1}{3}$. [/mm]

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]