matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikgemeinsame Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - gemeinsame Verteilung
gemeinsame Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Verteilung: stetig/diskret
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 26.04.2012
Autor: mikexx

Aufgabe
Hallo, ich wüsste gerne mal wie denn die gemeinsame Verteilung zweier Zufallsvariablen ist, wenn eine stetig und die andere diskret ist. Ich finde überall im Internet nur den Fall, daß entweder beide stetig oder beide diskret sind.

...

        
Bezug
gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Do 26.04.2012
Autor: luis52


> Hallo, ich wüsste gerne mal wie denn die gemeinsame
> Verteilung zweier Zufallsvariablen ist, wenn eine stetig
> und die andere diskret ist. Ich finde überall im Internet
> nur den Fall, daß entweder beide stetig oder beide diskret
> sind.
>  ...

Die gemeinsame Verteilungsfunktion ist immer [mm] $P(X\le x,Y\le [/mm] y)$, egal wie $X_$ oder $Y_ $ geartet ist. Dadurch ist die Verteilung von $(X,Y)$ eindeutig bestimmt.

vg Luis

Bezug
                
Bezug
gemeinsame Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 26.04.2012
Autor: mikexx

Ich habe nämlich ein Problem damit, die aposteriori-Wahrscheinlichkeit zu bestimmen:

Also diese lautet nach dem Satz von Bayes doch:


[mm] $P(Y|X)=\frac{P(X|Y)P(Y)}{P(X)}$ [/mm]

Nun können ja Y und X jeweils stetig oder diskret verteilt sein.

1. Fall:

Y ist stetig verteilt (d.h. die apriori-Verteilung ist stetig).

Dann ist doch: [mm] $P(Y)=\int_{\mu\in B}g(y)dy$, [/mm] wobei y eben Werte aus B annehmen kann. P(Y) ist also ein stetiges W.keitsmaß.

Nun kann doch $P(X|Y)$ auch stetiges oder diskretes W.keitsmaß sein.

Wie berechne ich es, wenn es stetig ist und wie, wenn es diskret ist?

Und was ist dann P(X)?


2. Fall: Y ist diskret verteilt, dann

[mm] $P(Y)=\sum_{\mu\in B}g(\mu)$, [/mm] hier ist [mm] $g(\mu)$ [/mm] also Zähldichte.

Auch hier kann $P(X|Y)$ diskretes oder stetiges W.keitsmaß sein.

Wie errrechnet man dann hier P(X|Y)?

Undd was ist hier P(X)?

Bezug
                        
Bezug
gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 26.04.2012
Autor: luis52

Schau mal hier (leider Englisch)

@BOOK{Amemiya94,
  title = {Introduction to Statistics and Econometrics},
  publisher = {Harvard University Press},
  year = {1994},
  author = {Takeshi Amemiya},
  address = {Cambridge, Massachusetts}
}

Seite 57--59.

vg Luis

Bezug
                                
Bezug
gemeinsame Verteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:30 Do 26.04.2012
Autor: mikexx

Wie kann ich das Dokument öffnen?

Edit: Schon bei google.books gefunden.


Dann eine andere Frage:

Habe ich denn Recht, daß man bei der aposteriori Wahrscheinlichkeit die Fälle unterscheiden muss:

(i) apriorio und X beide stetig
(ii) apriori und X beide diskret
(iii) apriori stetig, X diskret
(iv) apriori diskret, X stetig?

Bezug
                                        
Bezug
gemeinsame Verteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:28 Do 26.04.2012
Autor: mikexx

Sind bei der Bayesstatistik

eigentlich X und Y unabhängig?


Ich würde sagen: Ja, denn die Messdaten sollten nicht abhängen von der apriori Annahme...

Bezug
                                                
Bezug
gemeinsame Verteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:53 Do 26.04.2012
Autor: mikexx

Eine weitere Frage muss ich leider noch stellen, damir meine bisherigen Fragen nicht beantwortet wurden.

Also ich nehme jetzt mal an, es seien X und Y beide stetig verteilt.


Dann ergibt sich m.E. Folgendes für die aposteriori-Wahrscheinlichkeit:

[mm] $P(Y|X)=\frac{P(X|Y)P(Y)}{P(X)}=\frac{P(X,Y)}{P(X)}$ [/mm]

Dabei ergibt sich m.E. nun P(X) über die Randdichte

[mm] $f(x)=\int_{\Theta}f_{X,Y}(x,y)\, [/mm] dy$, also

[mm] $P(X)=\int_{B}\int_{\Theta}f_{X,Y}(x,y)dy [/mm] dx$

Oder? [mm] $\heta$ [/mm] soll der Bereich sein, aus dem die y Werte stammen und B der, aus dem die X-Werte stammen.


Und ist nicht:

[mm] $P(X,Y)=\int_{B,\Theta}f_{X,Y}(x,y)d(x,y)$? [/mm]




Bezug
                                                        
Bezug
gemeinsame Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 28.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                
Bezug
gemeinsame Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 28.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
gemeinsame Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 28.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]