matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionengebrochenrationale funktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - gebrochenrationale funktio
gebrochenrationale funktio < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochenrationale funktio: definitionsmenge und nullstell
Status: (Frage) beantwortet Status 
Datum: 21:03 So 21.01.2007
Autor: a-l18

Aufgabe
bestimmen die von folgenden gebr.rat. funktionen f die (max.) definitionsmengen D und nullstellen N.
a) f(x)= [mm] \bruch{3x^3+12x^2+12x}{5x+10} [/mm]
b) f(x)= [mm] \bruch{x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6}}{x^2-2} [/mm]
d) f(x)= [mm] \bruch{x^4+3x^3}{x^4-18x^2+81} [/mm]

hallo,
a) D= alle reelen zahlen außer 2
    N= (0/0)
stimmt das?
b) D= alle reellen zahlen außer [mm] \wurzel{2} [/mm] und [mm] -\wurzel{2} [/mm]
    N= ??
    ich weiß dass ich dazu den zähler gleich 0 setzen muss. aber wie rechne ich das x dann aus?
d) auch hier weiß ich nicht wie ich x ausrechnen muss. für D muss ich den nenner gleich 0 setzen und für N den zähler. aber wie löse ich das dann auf?


        
Bezug
gebrochenrationale funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 So 21.01.2007
Autor: XPatrickX


> bestimmen die von folgenden gebr.rat. funktionen f die
> (max.) definitionsmengen D und nullstellen N.
>  a) f(x)= [mm]\bruch{3x^3+12x^2+12x}{5x+10}[/mm]
>  b) f(x)=
> [mm]\bruch{x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6}}{x^2-2}[/mm]
>  d) f(x)= [mm]\bruch{x^4+3x^3}{x^4-18x^2+81}[/mm]


>  hallo,

Hallo :-)

>  a) D= alle reelen zahlen außer 2

D = R \ {-2} ich denke das war nur ein Flüchtigkeitsfehler.

>      N= (0/0)
>  stimmt das?

(0/0) ist eine Nullstelle, allerdings gibt es auch noch andere.

[mm] 3x^3+12x^2+12x [/mm] = 0 // x ausklammern
[mm] x(3x^2+12x+12) [/mm] = 0

Nun musst du den Teil in der Klammer noch ausrechnen. Das ist eine quadratische Gleichung, die du mit der pq-Formel lösen kannst.


>  b) D= alle reellen zahlen außer [mm]\wurzel{2}[/mm] und
> [mm]-\wurzel{2}[/mm]

Richtig!

>      N= ??
>      ich weiß dass ich dazu den zähler gleich 0 setzen
> muss. aber wie rechne ich das x dann aus?

Wieder mit der pq-Formel. Lass dich von den Wurzeln nicht verwirren.
[mm] x^2+\wurzel{3}x-\wurzel{2}x-\wurzel{6} [/mm] = 0
[mm] x^2+(\wurzel{3}-\wurzel{2})x-\wurzel{6} [/mm] = 0

mit p = [mm] \wurzel{3}-\wurzel{2} [/mm] und q [mm] =-\wurzel{6} [/mm]

>  d) auch hier weiß ich nicht wie ich x ausrechnen muss. für
> D muss ich den nenner gleich 0 setzen und für N den zähler.
> aber wie löse ich das dann auf?
>  

Zähler: Klammere [mm] x^3 [/mm] aus.
Nenner: Substituiere [mm] x^2 [/mm] = z und dann wiederum mit der pq-Formel die quadratische Gleichung lösen.

Ich hoffe du kommst damit erstmal ein bisschen weiter, ansonsten melde dich einfach nochmal. Gruß Patrick

Bezug
                
Bezug
gebrochenrationale funktio: ergebnisse
Status: (Frage) beantwortet Status 
Datum: 21:38 So 21.01.2007
Autor: a-l18

vielen dank für die hilfe!
a) die zweite N=(-2/0)
b) N=(1,8/0)    N=(-2,3/0)
d) D= R [mm] \{9} [/mm]    N=(0/0)   N=(-3/0)

stimmen meine ergebnisse?

Bezug
                        
Bezug
gebrochenrationale funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 21.01.2007
Autor: M.Rex

Hallo

> vielen dank für die hilfe!
>  a) die zweite N=(-2/0)

Fast, es gilt:

[mm] \bruch{3x³+12x²+12x}{5x+10} [/mm]
[mm] =\bruch{3x(x²+4x+4}{5x+10} [/mm]
[mm] =\bruch{3x(x+2)²}{5(x+2)} [/mm]
[mm] \underbrace{=}_{x\ne-2}\bruch{3x(x-2)}{5} [/mm]

Also sind die Nullstellen -2 und 0, und -2 ist gleichzeitig eine hebbare Definitionslücke.

>  b) N=(1,8/0)    N=(-2,3/0)

Sieht gut aus

>  d) D= R [mm]\{9}[/mm]    N=(0/0)   N=(-3/0)
>  

Passt  [mm] D=\IR/\{9\} [/mm]

> stimmen meine ergebnisse?

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]