matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionengebrochenrationale Fkt gesucht
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - gebrochenrationale Fkt gesucht
gebrochenrationale Fkt gesucht < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochenrationale Fkt gesucht: Lösung
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 16.10.2006
Autor: milika52

Wer kann mir denn bitte weiterhelfen: Gesucht ist eine gebrochen-rationale Funktion mit folgenden Eigenschaften:

- einzige und einfache Nullstelle bei x=2
- senkrechte Asymptote bei x=-3
- schräge Asymptote (irgendeine nach Wahl)

Könnte folgende Lösung stimmen? Wenn ja, warum?

[mm] ((x^2 [/mm] + 3) (x - 2)) / (x + [mm] 3)^2 [/mm]

Vielen Dank für die Mithilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
gebrochenrationale Fkt gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Mo 16.10.2006
Autor: Nienor

Hi, also im Prinzip kann die Lösung richtig sein, war die vorgegeben?
Wenn ja, dann musst du einfach nur die einzelnen Komponenten überprüfen, d.h.
1) Stimmt die Nullstelle? - Ja
2) Stimmt die senkrechte Asymptote? - Ja, Nenner Null für x=-3
3) Gibt's ne schräge Asyptote? -Ja, da Zählergrad ist größer Nennergrad (oben gibt's ein x³ und unten nur ein x²). Wenn du noch wisen willst, wo die Asymptote ist, dann mach einfach die Polynomdivision, da kommst du auf x-8 plus nen Bruch, den du nicht weiter auseinandernehmen kannst, also ist x-8 deine Asymptote
Um alle Unklarheiten zu beseitigen, zeichne einfach den Graph!

Bezug
                
Bezug
gebrochenrationale Fkt gesucht: lösung nicht gegeben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mo 16.10.2006
Autor: milika52

Vielen Dank für die rasche Antwort, die Lösung kann ich zwar nachvollziehen, sie ist aber nicht gegeben. Es war nur ein mögliches Zwischenergebnis. Wie komme ich rechnerisch auf ein solches Ergebnis?

Bezug
        
Bezug
gebrochenrationale Fkt gesucht: Zeichnung
Status: (Antwort) fertig Status 
Datum: 13:01 Mo 16.10.2006
Autor: informix

Hallo milika52,

> Wer kann mir denn bitte weiterhelfen: Gesucht ist eine
> gebrochen-rationale Funktion mit folgenden Eigenschaften:
>  
> - einzige und einfache Nullstelle bei x=2
>  - senkrechte Asymptote bei x=-3

mit oder ohne Vorzeichenwechsel?

>  - schräge Asymptote (irgendeine nach Wahl)
>  
> Könnte folgende Lösung stimmen? Wenn ja, warum?
>  
> [mm]((x^2+ 3) (x - 2)) / (x + 3)^2[/mm]
>  

meinst du so etwas:
[Dateianhang nicht öffentlich]

Das ist die o.a. Funktion, sie hat die geforderten Eigenschaften

gezeichnet mit []FunkyPlot (freeware!)

mit Vorzeichenwechsel bei der Polstelle wär's:
[mm]((x^2+ 3) (x - 2)) / (x + 3)[/mm]
zeichne selbst einmal...
hat aber keine MBAsymptote, sondern nur eine Schmiegekurve.

Gruß informix


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
gebrochenrationale Fkt gesucht: Idee
Status: (Antwort) fertig Status 
Datum: 14:42 Mo 16.10.2006
Autor: Nienor

Hi, ich hab jetzt keinen kompletten Lösungsansatz, aber zumindest eine Idee:
Du musst überlegen, was die Bedingungen bedeuten:

1) die Asymptote bei -3 bedeutet, dass unter dem Bruchstrich automatisch (x+3) steht, du kannst dir dann quasi aussuchen hoch was (wichtig ist nur, damit die schräge Asymptote zustande kommt, dass der Zählergrad größer dem Nennergrad ist)

2) die einzige Nullstelle liegt bei x=2, dh. irgendwo im Zähler muss (x-2) stehen und es darf nur mit Termen mulipliziert werden, die sich bei der Nullstellenberechnung als irrelevant herausstellen (x²+9)

Das war's dann auch schon. Es gibt also mehrere Lösungen, schätzungsweise unendlich viele und du kannst dir eine aussuchen! Z.B. die die du schon hast ;)

Bezug
                
Bezug
gebrochenrationale Fkt gesucht: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 16.10.2006
Autor: milika52

Das hört sich gut an. Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]