matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisgebrochene rationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - gebrochene rationale Funktion
gebrochene rationale Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochene rationale Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:36 So 14.10.2007
Autor: Grenzwert

Aufgabe
K Kreis in [mm] \IC\cup{\infty}, [/mm]
a,b [mm] \in \IC\cup{\infty} [/mm] \ K
Beh: Es gibt eine gebrochene rationale Funktion f mit
f(K)=K und f(a)=b

Guten Abend zusammen.
Ich stecke bei folgender Aufgabe... Ich habe versucht mir das alles einigermassen plastisch vorzustellen. Also die Abbildung f muss injektiv und surjektiv sein, damit sie Bedingung 1 erfüllt (f(K)=K). f ist also eine Bijektion (oder sogar eine Permutation, nicht?)
Gleichzeitig kann es aber nicht die Identitätsabbildung sein, da dies nicht mit der 2.Bedingung übereinstimmen würde

So weit so gut,dann weiss ich auch, dass f eine gebrochene rationale funktion ist.. Nur da hörts dann schon auf!
Könnte mir vielleichtjemand weiterhelfen, wie ich an diesen Beweis rangehen könnte? Vielen lieben Dank!!
Grenzwert

        
Bezug
gebrochene rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 15.10.2007
Autor: rainerS

Hallo!

> K Kreis in [mm]\IC\cup{\infty},[/mm]
>  a,b [mm]\in \IC\cup{\infty}[/mm] \ K
>  Beh: Es gibt eine gebrochene rationale Funktion f mit
>  f(K)=K und f(a)=b
>  Guten Abend zusammen.
>  Ich stecke bei folgender Aufgabe... Ich habe versucht mir
> das alles einigermassen plastisch vorzustellen. Also die
> Abbildung f muss injektiv und surjektiv sein, damit sie
> Bedingung 1 erfüllt (f(K)=K). f ist also eine Bijektion

Auf dem Kreis, aber es geht ja um eine gebrochen rationale Funktion auf [mm]\IC\cup{\infty}[/mm].

> So weit so gut,dann weiss ich auch, dass f eine gebrochene
> rationale funktion ist.. Nur da hörts dann schon auf!
>  Könnte mir vielleichtjemand weiterhelfen, wie ich an
> diesen Beweis rangehen könnte? Vielen lieben Dank!!

Als Erstes überlege dir, dass es genügt, die Behauptung für den Einheitskreis um 0 zu beweisen: Jeder Kreis mit Mittelpunkt m und Radius r ist durch eine lineare Abbildung [mm]z \mapsto r^{-1}(z-m)[/mm] auf den Einheitskreis abzubilden. Dann setzt du die einfache gebrochen rationale Funktion

[mm]f(z) = \bruch{c+dz}{e+fz}[/mm]

an und benutzt [mm]f(a)=b[/mm] sowie [mm]|f(z)|=1[/mm] für [mm]|z|=1[/mm].

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]