matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieganzzahlige Abstände
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - ganzzahlige Abstände
ganzzahlige Abstände < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ganzzahlige Abstände: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Mi 16.04.2008
Autor: Schwede

Aufgabe
Plaziere sechs Punkte auf einem beliebigen Kreis so, dass alle 15 Abstände ganzzahlig sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hier eine kleine Frage mit der ich mich seit längerem beschäftigen muss. Vier Punkte ist kein Problem aber mehr krieg ich nicht hin. Hab auch keine wirkliche  Idee wie ich das angehen könnte. Das einzige wäre ein Gleichungssystem mit 21 diophantisch-quadratischen Gleichungen ...

Jemand 'ne Idee?

Vielen Dank im Vorraus

Ralf

        
Bezug
ganzzahlige Abstände: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mi 16.04.2008
Autor: koepper

Hallo,

ich gehe mal davon aus, daß die 6 Punkte paarweise verschieden sein sollen, ansonsten wäre das ja trivial.
Zunächst kann man sich überlegen, daß die Aufgabe dazu äquivalent ist, rationale Abstände zu bekommen, weil man die durch entsprechende Skalierung des Kreisradius mit dem kgV der Abstandsnenner immer ganzzahlig bekommen kann.
Danach wird es aber schwierig: Ich würde als erstes die Abstände mit dem Kosinus-Satz durch die Winkelabstände der Punkte ausdrücken, also
$d = r * [mm] \sqrt{2 - 2 \cos \phi}$ [/mm]

Dann reduziert sich die Aufgabe darauf, Winkel [mm] $\phi_i$ [/mm] so zu bestimmen, daß $2 - 2 [mm] \cos \phi$ [/mm] zum Quadrat einer rat. Zahl wird für alle [mm] $\phi_i$ [/mm] und ihre Summen. Vielleicht kannst du mit dem Gedanken etwas anfangen.

LG
Will

Bezug
        
Bezug
ganzzahlige Abstände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:41 Sa 19.04.2008
Autor: felixf

Hallo Ralf

> Plaziere sechs Punkte auf einem beliebigen Kreis so, dass
> alle 15 Abstände ganzzahlig sind.
>  
>  Hier eine kleine Frage mit der ich mich seit längerem
> beschäftigen muss.

Inwiefern? Etwas Kontext wuerde vielleicht weiterhelfen; etwa wenn es eine Uebungsaufgabe ist dann hilft es zu wissen, was ihr so an Stoff gemacht habt, vielleicht gibt das eine gute Idee.

LG Felix


Bezug
        
Bezug
ganzzahlige Abstände: Antwort
Status: (Antwort) fertig Status 
Datum: 02:23 Sa 19.04.2008
Autor: Al-Chwarizmi


> Plaziere sechs Punkte auf einem beliebigen Kreis so, dass
> alle 15 Abstände ganzzahlig sind.



Tipp:   spiele mal ein bisschen mit pythagoräischen Tripeln !  Wenn ich auf einem karierten Block einen Kreis skizzieren will und keinen Zirkel dabei habe, wähle ich zum Beispiel den Radius  5  und erhalte eine ganze Anzahl ganzzahliger Punkte, z.B.  (5/0),(4/3),(3/4),(0/5),(-3/4),(-4/3),(-5/0), etc.  , so dass ich frei von Hand einen ganz passablen Kreis durch sie legen kann.
Unter diesen Punkten gibt es wohl noch keine 6 geeigneten, aber es gibt ja viele andere als das  3-4-5 Pythagorastripel, zum Beispiel 5-12-13, 8-15-17, 7-24-25  usw. Ich würde nun mal etwa einen Kreis mit dem Radius r=5*13*17 nehmen (vielleicht genügt auch schon z.B. r=5*17) und darauf die Punkte mit ganzzahligen Koordinaten und ganzzahligen Abständen suchen, z.B. mittels eines kleinen selbstgemachten Computerprogramms.

Gruss       Al-Chwarizmi



Bezug
        
Bezug
ganzzahlige Abstände: Antwort
Status: (Antwort) fertig Status 
Datum: 02:42 Sa 19.04.2008
Autor: Zneques

Hallo,

Ich bin beim googlen direkt auf die Lösung gestoßen.
http://www.primini.homepage.t-online.de/feuerb-9.html

Der Ansatz von Al-Chwarizmi ist wirklich gut. Insbesondere, da der Autor dort noch schreibt :"Bei meinen Ganzzahl-Knobeleien warte ich seit vielen Jahren auf eine korrekte Antwort...deshalb löse ich hier und heute in 2004 die im Jahre 1998 gestellte kleine Rätselfrage!"
Die Beispiellösung hat den Radius [mm] (5*13)^2. [/mm]

Ciao.

Bezug
                
Bezug
ganzzahlige Abstände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:57 Sa 19.04.2008
Autor: Al-Chwarizmi

oh, danke für die Blumen und die url  ......    und gut' Nacht !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]