matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisganze Fkt mit geg. Nullstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - ganze Fkt mit geg. Nullstellen
ganze Fkt mit geg. Nullstellen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ganze Fkt mit geg. Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Di 06.01.2009
Autor: Floyd

Hallo!

Ich hätte hier noch ein Beispiel das mich beschäfigt:
Geben sie eine ganze Funktion an, die genau in den Punkten z = [mm] \wurzel{n}, n\in \IN, [/mm] eine einfache Nullstelle besitzt.

Hab mir überlegt, dass es irgendwie mit dem Weierstraß'schen Produktsatz zusammenhängt, aber bin mir hier nicht ganz sicher.
Oder kann man hier einfach folgendes machen?:
[mm] sin(\pi z)/\pi [/mm] = z [mm] \produkt_{i=1}^{\infty}(1-z^2/n^2) [/mm]
[mm] \Rightarrow [/mm]
[mm] sin(\pi z^2)/(\pi [/mm] * z) = z [mm] \produkt_{i=1}^{\infty}(1-z^4/n^2) [/mm]

Aber was wäre, wenn man eine doppelte Nullstelle bei z = [mm] \wurzel{n} [/mm] haben will?
[mm] sin(\pi z^2)^2/(\pi [/mm] * [mm] z)^2 [/mm] = [mm] z^2 \produkt_{i=1}^{\infty}(1-z^4/n^2)^2 [/mm]  ??

Oder was müsste man machen, damit man in den Punkten [mm] z=\wurzel{n} [/mm] einen Pol mit Residuum c bekommt??

Besten Dank im Voraus!
mfg Floyd

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ganze Fkt mit geg. Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 07.01.2009
Autor: fred97


> Hallo!
>  
> Ich hätte hier noch ein Beispiel das mich beschäfigt:
>  Geben sie eine ganze Funktion an, die genau in den Punkten
> z = [mm]\wurzel{n}, n\in \IN,[/mm] eine einfache Nullstelle
> besitzt.
>  
> Hab mir überlegt, dass es irgendwie mit dem
> Weierstraß'schen Produktsatz zusammenhängt, aber bin mir
> hier nicht ganz sicher.


Das mußt Du über den Weierstraß'schen Produktsatz machen. Dieser gibt Dir doch eine tadellose Konstruktionsanleitung !!


FRED



>  Oder kann man hier einfach folgendes machen?:
>  [mm]sin(\pi z)/\pi[/mm] = z [mm]\produkt_{i=1}^{\infty}(1-z^2/n^2)[/mm]
>  [mm]\Rightarrow[/mm]
>  [mm]sin(\pi z^2)/(\pi[/mm] * z) = z
> [mm]\produkt_{i=1}^{\infty}(1-z^4/n^2)[/mm]
>  
> Aber was wäre, wenn man eine doppelte Nullstelle bei z =
> [mm]\wurzel{n}[/mm] haben will?
>  [mm]sin(\pi z^2)^2/(\pi[/mm] * [mm]z)^2[/mm] = [mm]z^2 \produkt_{i=1}^{\infty}(1-z^4/n^2)^2[/mm]
>  ??
>  
> Oder was müsste man machen, damit man in den Punkten
> [mm]z=\wurzel{n}[/mm] einen Pol mit Residuum c bekommt??
>  
> Besten Dank im Voraus!
>  mfg Floyd
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
ganze Fkt mit geg. Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 07.01.2009
Autor: Floyd


> Das mußt Du über den Weierstraß'schen Produktsatz machen. Dieser gibt Dir doch eine tadellose Konstruktionsanleitung !!

Danke .. hab jetz gesehn wie das mit den Nullstellen geht.
Aber wie macht man das mit den Residuen,
damit man in den Punkten [mm] z=\wurzel{n} [/mm] einen Pol mit Residuum c bekommt?

Besten Dank im Voraus,
mfg Floyd

Bezug
                        
Bezug
ganze Fkt mit geg. Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 07.01.2009
Autor: fred97


> > Das mußt Du über den Weierstraß'schen Produktsatz machen.
> Dieser gibt Dir doch eine tadellose Konstruktionsanleitung
> !!
>  
> Danke .. hab jetz gesehn wie das mit den Nullstellen geht.
>  Aber wie macht man das mit den Residuen,
>  damit man in den Punkten [mm]z=\wurzel{n}[/mm] einen Pol mit
> Residuum c bekommt?

Hier ist der Satz von Mittag-Leffler zuständig

FRED


>  
> Besten Dank im Voraus,
>  mfg Floyd  


Bezug
                                
Bezug
ganze Fkt mit geg. Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Mi 07.01.2009
Autor: Floyd

Herzlichen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]