matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesfunktionen, symmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - funktionen, symmetrie
funktionen, symmetrie < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionen, symmetrie: Hilfe,tipps
Status: (Frage) beantwortet Status 
Datum: 12:03 So 31.01.2010
Autor: artstar

Aufgabe
Welche Funktion hat einen zur y-Achse symmetrischen Graphen?

a) f(x) = [mm] \bruch{1}{x} [/mm]

b) f(x)= [mm] \bruch{1}{x²} [/mm]

c) f(x)= [mm] \bruch{1}{x+1} [/mm]

d) f(x)= [mm] \bruch{1}{x²+1} [/mm]

e) f(x)= [mm] \bruch{x}{x²+1} [/mm]

f) f(x)= [mm] \wurzel{x²+1} [/mm]

Hey,

a) a) f(x) = [mm] \bruch{1}{x} [/mm]

-f(x) = [mm] \bruch{-1}{x} [/mm]
f(-x) = [mm] \bruch-{1}{x} [/mm]
punktsymm.

b) f(x)= [mm] \bruch{1}{x²} [/mm]

f(x)= [mm] \bruch{1}{x²} [/mm]
[mm] f(-x)=\bruch{1}{-x²}=\bruch{1}{x²} [/mm]

y achsensymm.

c) f(x)= [mm] \bruch{1}{x+1} [/mm]

d) f(x)= [mm] \bruch{1}{x²+1} [/mm]

ich weiß nicht wie ich hier vorgehen soll.soll ich bei c) c) [mm] \bruch{1}{1} [/mm] rechnen dass dann gleich f(x) = [mm] \bruch{2}{x²} [/mm]  ??

bei e und f in ich ganz überfordert.







        
Bezug
funktionen, symmetrie: (-x) einsetzen
Status: (Antwort) fertig Status 
Datum: 12:15 So 31.01.2010
Autor: Loddar

Hallo artstar!


Die vorgehensweise ist bei allen Aufgaben hier identisch: einfach jeweils den Term $(-x)_$ in die Funktionsvorschrift einsetzen.



> a) f(x) = [mm]\bruch{1}{x}[/mm]
>  
> -f(x) = [mm]\bruch{-1}{x}[/mm]
>  f(-x) = [mm]\bruch-{1}{x}[/mm]
>   punktsymm.

Siehe Anmerkung oben! Aber Dein Ergebnis stimmt.

  

> b) f(x)= [mm]\bruch{1}{x²}[/mm]
>  
> f(x)= [mm]\bruch{1}{x²}[/mm]
> [mm]f(-x)=\bruch{1}{-x²}=\bruch{1}{x²}[/mm]
>  
> y achsensymm.

Das Ergebnis ist korrekt. Allerdings musst Du beim Eisnetzen auch immer Klammern setzten!
$$f(-x) \ = \ [mm] \bruch{1}{(-x)^2} [/mm] \ = \ [mm] \bruch{1}{x^2} [/mm] \ = \ f(x)$$
  

> c) f(x)= [mm]\bruch{1}{x+1}[/mm]
>  
> d) f(x)= [mm]\bruch{1}{x²+1}[/mm]
>  
> ich weiß nicht wie ich hier vorgehen soll.soll ich bei c)
> c) [mm]\bruch{1}{1}[/mm] rechnen dass dann gleich f(x) =
> [mm]\bruch{2}{x²}[/mm]  ??
>  
> bei e und f in ich ganz überfordert.

Siehe Anmerkung ganz oben!


Gruß
Loddar


Bezug
                
Bezug
funktionen, symmetrie: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:56 So 31.01.2010
Autor: artstar

Aufgabe
c) f(x)= $ [mm] \bruch{1}{x+1} [/mm] $

d) f(x)= $ [mm] \bruch{1}{x²+1} [/mm] $  

c) f(x)= $ [mm] \bruch{1}{x+1} [/mm] $

   -f(x)= f(x)= $ [mm] \bruch{-1}{-x+1} [/mm] $
  f(-x)   f(x)= $ [mm] \bruch{1}{(-x)+1} [/mm] $
punktsymm.

das wäre wenn ich nur -x eingesett hätte. versteh ich nicht.

Bezug
                        
Bezug
funktionen, symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 So 31.01.2010
Autor: qsxqsx

Hallo,

Ich weiss nicht was du genau nicht verstehst, aber ich glaube du bist dir beim Unterschied von -f(-x) und f(-x) nicht sicher? Oder nicht?

Aufjedenfall könntest du versuchen dir mal versuchen graphisch zu veranschaulichen was es heisst wenn f(x) = f(-x) ist. Das heisst ja auf Deutsch, dass der y-Wert an der Stelle x gleich dem y-Wert an der Stelle (-x) ist. Das bedeutet dann Achsensymetrie bezüglich der y-Achse.

Bezug
                        
Bezug
funktionen, symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 So 31.01.2010
Autor: artstar

Aufgabe
c) f(x)= $ [mm] \bruch{1}{x+1} [/mm] $

d) f(x)= $ [mm] \bruch{1}{x²+1} [/mm] $  



c) f(x)= $ [mm] \bruch{1}{x+1} [/mm] $

   -f(x)= f(x)= $ [mm] \bruch{-1}{-x+1} [/mm] $
  f(-x)   f(x)= $ [mm] \bruch{1}{(-x)+1} [/mm] $

doch den unterschied zwischen y-achsen und punktsymmetrie versteh ich schon, doch ich versteh bei meiner aufgabe nicht, wie ich das rechnen muss. ob ich die 1 unten nicht irgendwie wegbekommen muss?  

Bezug
                                
Bezug
funktionen, symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 So 31.01.2010
Autor: leduart

Hallo
Du machst Fehler, weil du keine Klammern setzt!
$f(x)= [mm] \bruch{1}{x+1} [/mm] $
$-f(x)=- [mm] \bruch{1}{x+1} =\bruch{-1}{x+1} [/mm] $
(ein Bruch wird mit ner Zahl mult. indem man Zähler ODER Nenner mit der zahl (hier -1) mult.!
[mm] $f(-x)=\bruch{1}{-x+1} [/mm] $
jetzt solltest du sehen, dass [mm] f(-x)\ne-f(x) [/mm] und [mm] f(-x)\ne [/mm] f(x)
ist. Also weder achsensym. noch punktsym zum 0 Punkt
(habt ihr auch Symmetrie zu anderen Punkten behandelt?)
jetzt entsprechen mit dem Rest der Aufgaben.
(Tip: Funktionen für die nicht gilt f(0)=0 können nie punktsym zu 0 sein. überleg warum)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]