matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesfunktion als differenz darstel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - funktion als differenz darstel
funktion als differenz darstel < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktion als differenz darstel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mi 22.04.2009
Autor: briddi

Aufgabe
jede auf [a,b] stetig diffbare funktion lässt sich als differenz zweier monotoner funktionen schreiben.
ist die aussage richtig?

hallo,
ich hab zuerst gedacht die aussage wäre falsch und mir ein gegenbeispiel konstruiert,doch als ich das aufschreiben wollte,hab ich gemerkt dass mein beispiel doch nicht anwendbar ist. jetzt bin ich irgendwie grad etwas irritiert, ob sie nicht vielleicht doch stimmt,ich kanns aber nicht beweisen.
jemand ne idee?

danke schon mal

briddi

        
Bezug
funktion als differenz darstel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 Mi 22.04.2009
Autor: reverend

Hallo briddi,

jedenfalls kannst Du aufhören, ein Gegenbeispiel zu suchen. Die Aussage stimmt. Du musst sie nur noch beweisen.

Grüße
reverend

Bezug
        
Bezug
funktion als differenz darstel: Antwort
Status: (Antwort) fertig Status 
Datum: 04:31 Do 23.04.2009
Autor: felixf

Hallo briddi

> jede auf [a,b] stetig diffbare funktion lässt sich als
> differenz zweier monotoner funktionen schreiben.
>  ist die aussage richtig?

Um dir einen konkreten Beweisansatz zu geben:

Da die Funktion (nennen wir sie $f$) stetig diffbar ist, gilt $f(x) = f(a) + [mm] \int_a^x [/mm] f'(t) dt$ fuer alle $x [mm] \in [/mm] [a, b]$.

Monoton steigend waere sie, wenn $f'(x) [mm] \ge [/mm] 0$ fuer alle $x$ waer. Und monoton fallend wenn $f'(x) [mm] \le [/mm] 0$ fuer alle $x$ waer.

Also versuch die Funktion $f'(x)$ doch mal als Differenz zweier stetiger Funktion [mm] $g_1, g_2 [/mm] : [a, b] [mm] \to \IR$ [/mm] zu schreiben mit [mm] $g_1(x) \ge [/mm] 0$ und [mm] $g_2(x) \ge [/mm] 0$ fuer alle $x [mm] \in [/mm] [a, b]$, also $f'(x) = [mm] g_1(x) [/mm] - [mm] g_2(x)$. [/mm] Dann sind [mm] $f_i(x) [/mm] := [mm] \int_0^x g_i(t) [/mm] dt$, $i = 1, 2$ monoton steigend und es gilt... was gilt wohl?

LG Felix


Bezug
        
Bezug
funktion als differenz darstel: für Interessierte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Do 23.04.2009
Autor: fred97

Allgemeiner hat man:

Ist $f: [a,b] [mm] \to \IR [/mm] $ eine Funktion, so gilt:

        f ist auf [a,b] von beschränkter Variation [mm] \gdw [/mm] f lässt sich als Differenz zweier monotoner Funktionen darstellen.

Da jede differenzierbare Funktion mit beschränkter Ableitung von beschränkter Variation ist, hat natürlich jede stetig differenzierbare Funktion diese Eigenschaft.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]