matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-Wettbewerbefür 7./8. Schuljahr: Aufgabe 2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathematik-Wettbewerbe" - für 7./8. Schuljahr: Aufgabe 2
für 7./8. Schuljahr: Aufgabe 2 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

für 7./8. Schuljahr: Aufgabe 2: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 23:54 Fr 20.02.2004
Autor: Stefan

In einem Park sind Kiefern und Eichen. Welche der folgenden Aussagen kann wahr sein?

A: Jede Eiche ist niedriger als gewisse Kiefern, und alle Kiefern sind niedriger als eine beliebige Eiche.

B: Jede Eiche ist niedriger als gewisse Kiefern, und einige Kiefern sind niedriger als eine beliebige Eiche.

C: Eine gewisse Eiche ist niedriger als gewisse Kiefern, und einige Kiefern sind niedriger als eine beliebige Eiche.

D: Eine gewisse Eiche ist niedriger als jede beliebige Kiefer, und eine gewisse Kiefer ist niedriger als eine beliebige Eiche.

E: Die Aussagen A bis D sind immer falsch.

        
Bezug
für 7./8. Schuljahr: Aufgabe 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Do 26.02.2004
Autor: Nalath

Die richtige Antwort könnt ihr hier: https://matheraum.de/read?f=26&t=17&i=41 machlesen.

Ich glaube, dass nur Antwort B richtig sein kann. Allerdings hat mich das Wort 'gewisse' verwirrt, da ich dessen Bedeutung nicht ganz erschließen konnte.

Bezug
                
Bezug
für 7./8. Schuljahr: Aufgabe 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Do 26.02.2004
Autor: Stefan

Liebe Nalath!

> Ich glaube, dass nur Antwort B richtig sein kann.

B kann richtig sein, stimmt. Aber nicht nur B. Was sonst noch?

> Allerdings hat mich das Wort 'gewisse' verwirrt, da ich
> dessen Bedeutung nicht ganz erschließen konnte.

"Eine gewisse Eiche" bedeutet hier das Gleiche wie "einige Eichen", es heißt: "es gibt (mindestens) eine Eiche mit der Eigenschaft..."

Versuche es noch einmal (oder jemand anders).

Liebe Grüße
Stefan  


Bezug
                        
Bezug
für 7./8. Schuljahr: Aufgabe 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Fr 27.02.2004
Autor: Larissa

C müsste eigenltich auch richtig sein...diesmal gibt es ja keine binomischen Formeln zu beachten ;-)!

Bezug
                                
Bezug
für 7./8. Schuljahr: Aufgabe 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Fr 27.02.2004
Autor: Stefan

Liebe Larissa,

ja, C ist auch richtig, sehr gut! [ok]

Wie sieht es denn mit E aus (vielleicht mit Begründung)?

Liebe Grüße
Stefan

Bezug
        
Bezug
für 7./8. Schuljahr: Aufgabe 2: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:18 So 29.02.2004
Autor: Stefan

Am besten ist es, wenn man sich die Aussagen irgendwie formalisiert, also in eine einheitliche Form bringt. Das kann man durch logische Symbole machen (dann ist es noch einsichtiger), geht aber auch sprachlich.

> A: Jede Eiche ist niedriger als gewisse Kiefern, und alle
> Kiefern sind niedriger als eine beliebige Eiche.

"Übersetzung":

Für alle [mm]E[/mm] gilt: Es gibt ein [mm]K[/mm] mit [mm]E Für alle [mm]K[/mm] gilt: Für alle [mm]K[/mm] ist [mm]K
Behauptung: Das ist immer falsch.

Beweis: Nehmen wir uns mal ein beliebiges [mm]E_0[/mm]. Dann gibt es nach der ersten Aussage ein [mm]K_0[/mm] mit [mm]E_0 < K_0[/mm].

Andererseits muss nach der zweiten Aussage für dieses [mm]K_0[/mm] gelten:

[mm]K_0
Es kann aber nicht zugleich [mm]E_0

> B: Jede Eiche ist niedriger als gewisse Kiefern, und einige
> Kiefern sind niedriger als eine beliebige Eiche.

"Übersetzung":

Für alle [mm]E[/mm] gilt: Es gibt ein [mm]K[/mm] mit [mm]E Es gibt ein [mm]K[/mm] mit: Für alle [mm]K[/mm] ist [mm]K
Sofern es mehr als zwei Kiefern gibt, kann diese Aussage durchaus gelten.

Denn es kann ja durchaus für alle [mm]E[/mm] ein (gemeinsames) [mm]K_0[/mm] geben mit [mm]E

> C: Eine gewisse Eiche ist niedriger als gewisse Kiefern,
> und einige Kiefern sind niedriger als eine beliebige
> Eiche.

"Übersetzung":

Es gibt ein [mm]E[/mm] mit: Es gibt ein [mm]K[/mm] mit [mm]E Es gibt ein [mm]K[/mm] mit: Für alle [mm]E[/mm] ist [mm]K
Sofern es mehr als zwei Kiefern gibt, kann diese Aussage durchaus gelten.

Denn es kann ja durchaus ein [mm]E_0[/mm] und ein [mm]K_0[/mm] geben mit [mm]E_0

> D: Eine gewisse Eiche ist niedriger als jede beliebige
> Kiefer, und eine gewisse Kiefer ist niedriger als eine
> beliebige Eiche.

"Übersetzung":

Es gibt ein [mm]E[/mm] mit: Für alle [mm]K[/mm] gilt [mm]E Es gibt ein [mm]K[/mm] mit: Für alle [mm]E[/mm] gilt [mm]K
Behauptung: Das ist immer falsch.

Beweis: Nach Voraussetzung gibt es ein [mm]E_0[/mm] und und zugleich ein [mm]K_0[/mm] mit

(*) [mm]E_0 < K[/mm] für alle [mm]K[/mm]

und zugleich

(**) [mm]K_0 < E[/mm] für alle [mm]E[/mm].

Aus (*) folgt insbesondere: [mm]E_0 < K_0[/mm].

Aus (**) folgt insbesondere: [mm]K_0 < E_0[/mm].

Es kann aber nicht zugleich [mm]E_0

> E: Die Aussagen A bis D sind immer falsch.

Diese Aussage kann wahr sein, wie wir oben gezeigt haben.  Sie ist damit sogar automatisch immer wahr.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]