matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikfreie Weglänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - freie Weglänge
freie Weglänge < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

freie Weglänge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:18 So 27.09.2009
Autor: Unk

Aufgabe
Berechne die mittlere freie Weglänge von Silber bei 300K und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans Leitungsband abgibt.
Dicht [mm] \rho_{Ag}=10,5 [/mm] g/mol, molare Masse [mm] M_{Ag}=107,87 [/mm] g/mol, sp. elektr. Widerstände [mm] \varphi_{el 300K}=1,61\Omega [/mm] cm und [mm] \varphi_{el 20K}=0,0038\Omega [/mm] cm.

Hallo,

ich habe ein Ergebnis bereits vorliegen, das angeblich stimmen soll.
Sei [mm] \lambda [/mm] die gesuchte mitll. fr. Weglänge, dann soll rauskommen:
[mm] \lambda(300)=0,25 [/mm] nm
[mm] \lambda(20)=480 [/mm] nm.

Meine Rechnung:
Es gilt: [mm] \sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv} [/mm] mit n=Elektronenanzahl, m=Masse Elektron, v=mittl. Geschwindigkeit und umgeformt:
[mm] \lambda=\frac{mv}{ne^2\varphi} [/mm] und [mm] v=\sqrt{\frac{3k_BT}{m}} [/mm]
Also: [mm] \lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}. [/mm]

Die Teilchenzahl berechne ich aus: [mm] n=\frac{N}{V}: [/mm]
[mm] M/\rho=\frac{V}{\frac{N}{N_A}} [/mm] folgt: [mm] n=5,9\cdot 10^{8}m^{-3}. [/mm]

Wenn ich all dies einsetze erhalte ich [mm] \lambda(20)=4,77\cdot 10^{-13}m [/mm] und [mm] \lambda(300)=433nm. [/mm]

Ist meine Rechnung fehlerhaft oder das vorgegebene Ergebnis?


        
Bezug
freie Weglänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mo 28.09.2009
Autor: rainerS

Hallo!

> Berechne die mittlere freie Weglänge von Silber bei 300K
> und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans
> Leitungsband abgibt.
>  Dicht [mm]\rho_{Ag}=10,5[/mm] g/mol, molare Masse [mm]M_{Ag}=107,87[/mm]
> g/mol, sp. elektr. Widerstände [mm]\varphi_{el 300K}=1,61\Omega[/mm]
> cm und [mm]\varphi_{el 20K}=0,0038\Omega[/mm] cm.

Erst einmal stimmen diese Werte nicht: [mm] $\varphi_{el 300K}=1,61*10^{-6}\Omega\mathrm{cm}$. [/mm] Den richtigen Wert bei 20K habe ich nicht gefunden.


> ich habe ein Ergebnis bereits vorliegen, das angeblich
> stimmen soll.
>  Sei [mm]\lambda[/mm] die gesuchte mitll. fr. Weglänge, dann soll
> rauskommen:
>  [mm]\lambda(300)=0,25[/mm] nm
>  [mm]\lambda(20)=480[/mm] nm.
>  
> Meine Rechnung:
>  Es gilt: [mm]\sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv}[/mm]
> mit n=Elektronenanzahl, m=Masse Elektron, v=mittl.
> Geschwindigkeit und umgeformt:
>  [mm]\lambda=\frac{mv}{ne^2\varphi}[/mm] und
> [mm]v=\sqrt{\frac{3k_BT}{m}}[/mm]
>  Also: [mm]\lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}.[/mm]
>  
> Die Teilchenzahl berechne ich aus: [mm]n=\frac{N}{V}:[/mm]
>  [mm]M/\rho=\frac{V}{\frac{N}{N_A}}[/mm] folgt: [mm]n=5,9\cdot 10^{8}m^{-3}.[/mm]

[mm] n=5,0*10^{28}\mathrm{m}^{-3} [/mm].

>  
> Wenn ich all dies einsetze erhalte ich
> [mm]\lambda(20)=4,77\cdot 10^{-13}m[/mm] und [mm]\lambda(300)=433nm.[/mm]
>  
> Ist meine Rechnung fehlerhaft oder das vorgegebene
> Ergebnis?

Du hast die Boltzmannverteilung für die Elektronen angenommen, um die mittlere Geschwindigkeit der Elektronen zu bestimmen. Das ist falsch. Elektronen sind Fermionen, daher musst du die Fermiverteilung verwenden. Berechne die Fermienergie von Silber und daraus die mittlere Geschwindigkeit.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]