freie Variablen im LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Aufgabe:
1.
Angenommen das lineare gleichungssystem A⋅x=b(A eine mxn Matrix)hat mindestens eine Lösung und [A'|b'] sei die Zeilenstufenform der Koeffizientenmatrix [A|b]. Welche Variablen xi (Komponenten des Vektors x) sind frei wählbar? (Hinweis: die i-te Spalte von [A'|b'] muss eine gewisse Eigenschaft besitzen.)
2.
Falls b=0 der Nullvektor (aus m Nullen) ist, dann nennt man das lineare Gleichungssystem A⋅x=0 homogen und man sieht leicht, dass der Nullvektor x=0 (aus n Nullen) eine Lösung von A⋅x=0 ist - die sogenannte triviale Lösung. Zeigen Sie: für m<n hat A⋅x=0 nicht-triviale Lösungen (mind. ein xi von Null verschieden) |
Hallo liebe Experten , hab ne Aufgabe bei der ich nicht klarkomme und keinen Ansatz finde, vllt. könnt ihr mir ja helfen. Würde mich sehr freuen und wär euch sehr dankbar. Also wenn ihr mir helfen könnten wär das super. sitz jetz 2 Tage dran, hab im Netz gesucht und in meinen Büchern aber komm nicht klar mit der Aufgabe. Wie muss ich denn an die Aufgabe rangehen, wie bestimme ich die freiwählbaren Variablen usw.
Hatten erst 2 Vorlesungen und dazu wurde ncihts gesagt und komm mit dieser Aufgabe nicht klar. Ansätze und Vorgehensweisen würden mir schon sehr helfen . Danke
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/LGS-Zeilenstufenform
|
|
|
|
> Aufgabe:
> 1.
> Angenommen das lineare gleichungssystem A⋅x=b(A eine mxn
> Matrix)hat mindestens eine Lösung und [A'|b'] sei die
> Zeilenstufenform der Koeffizientenmatrix [A|b]. Welche
> Variablen xi (Komponenten des Vektors x) sind frei
> wählbar? (Hinweis: die i-te Spalte von [A'|b'] muss eine
> gewisse Eigenschaft besitzen.)
Hallo,
.
Irgendwie seltsam geschrieben diese Aufgabe...
Aber nach gefühlten 20mal lesen, weiß ich wohl, was Du antworten sollst:
Man kann die Variable [mm] x_i [/mm] frei wählen, wenn die i-te Spalte von A' (bzw. von A, aber da sieht man's nicht auf einen Blick) von den vorhergehenden linear abhängig ist.
Oder anders formuliert - ich glaub', dies sollst Du antworten: man kann die Variable [mm] x_i [/mm] frei wählen, wenn A' in der i-ten Spalte kein führendes Zeilenelement enthält.
Beispiel:
ZSF sei [mm] A'=\pmat{\green{1}&2&3&4\\0&0&\green{1}&5\\0&0&0&0}.
[/mm]
Hier sind [mm] x_2 [/mm] und [mm] x_4 [/mm] frei zu wählende Variablen.
Gruß v. Angela
>
> 2.
> Falls b=0 der Nullvektor (aus m Nullen) ist, dann nennt
> man das lineare Gleichungssystem A⋅x=0 homogen und man
> sieht leicht, dass der Nullvektor x=0 (aus n Nullen) eine
> Lösung von A⋅x=0 ist - die sogenannte triviale Lösung.
> Zeigen Sie: für m<n hat A⋅x=0 nicht-triviale Lösungen
> (mind. ein xi von Null verschieden)
> Hallo liebe Experten , hab ne Aufgabe bei der ich nicht
> klarkomme und keinen Ansatz finde, vllt. könnt ihr mir ja
> helfen. Würde mich sehr freuen und wär euch sehr dankbar.
> Also wenn ihr mir helfen könnten wär das super. sitz jetz
> 2 Tage dran, hab im Netz gesucht und in meinen Büchern
> aber komm nicht klar mit der Aufgabe. Wie muss ich denn an
> die Aufgabe rangehen, wie bestimme ich die freiwählbaren
> Variablen usw.
>
> Hatten erst 2 Vorlesungen und dazu wurde ncihts gesagt und
> komm mit dieser Aufgabe nicht klar. Ansätze und
> Vorgehensweisen würden mir schon sehr helfen . Danke
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>
> http://www.onlinemathe.de/forum/LGS-Zeilenstufenform
>
|
|
|
|