matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungformel finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - formel finden
formel finden < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Sa 07.02.2009
Autor: isabell_88

Aufgabe
Finden und beweisen Sie eine Formel für die erste ableitungsfunktion der Produktfunktion f=u*v*w, also für eine Funktion, die aus 3 Faktoren aufgebaut ist.

Als Anleitung habe ich gegeben, dass ich die Produktregel für 2 Faktoren mehrfach anwenden soll.

ich habe keinen blassen Schimmer wie man das rechnet....ich weiß nur, dass man klammern setzen muss um die produktregel für 2 faktoren anwenden zu können. aber da habe ich gleich das nächste problem, weil ich nicht weiß wie ich sinnvolle klammern setzen kann.


bei der aufgabe bin ich total ratlos und brauche dringend hilfe


        
Bezug
formel finden: erste Schritte
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 07.02.2009
Autor: Loddar

Hallo isabell!


Wende die MBProduktregel in bekannter Weise zwei-mal an:
$$f(x) \ = \ u*v*w \ = \ u*(v*w)$$
[mm] $$\Rightarrow [/mm] \ \ f'(x) \ = \ u'*(v*w)+u*(v*w)'$$
Und wie lautet nun $(v*w)'_$ ?

Gruß
Loddar


Bezug
                
Bezug
formel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 07.02.2009
Autor: isabell_88

[mm] (v\cdot{}w)' [/mm]  ist dementsprechend v' [mm] \dot [/mm] w + v [mm] \dot [/mm] w'

es gilt also f= u [mm] \dot [/mm] v [mm] \dot [/mm] w = u (v [mm] \dot [/mm] w)
f'= u'(v [mm] \dot [/mm] w) +u  [mm] (v\cdot{}w)' [/mm]
f'= u'(v [mm] \dot [/mm] w) + u (v' [mm] \dot [/mm] w +v [mm] \dot [/mm] w')

und nun?





Bezug
                        
Bezug
formel finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 07.02.2009
Autor: schachuzipus

Hallo Isabell,

> [mm](v\cdot{}w)'[/mm]  ist dementsprechend v' [mm]\dot[/mm] w + v [mm]\dot[/mm] w' [ok]
>  
> es gilt also f= u [mm]\dot[/mm] v [mm]\dot[/mm] w = u (v [mm]\dot[/mm] w)
>  f'= u'(v [mm]\dot[/mm] w) +u  [mm](v\cdot{}w)'[/mm]
>  f'= u'(v [mm]\dot[/mm] w) + u (v' [mm]\dot[/mm] w +v [mm]\dot[/mm] w')

[daumenhoch]

>  
> und nun?

...bist du fertig! Oder multipliziere noch aus, wenn du magst


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]