matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungformale Regeln für Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - formale Regeln für Ableitung
formale Regeln für Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formale Regeln für Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mi 30.04.2014
Autor: kolja21

Aufgabe
[mm] e^{2xy}*(x^{2} [/mm] + [mm] 2*x*y^{2}+x^{5}*y) [/mm]

ich habe verschiedene Formulierungen für die Ableitung gesehen. Etwa [mm] \bruch{d}{dx} [/mm] oder [mm] \bruch{\Delta y}{\Delta x} [/mm] oder f'(x). Wenn ich jetzt einfach nur nach x Ableiten möchte (was ich kann), welche dieser Schweibweisen muss ich verwenden, damit es vollständig und korrekt ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
formale Regeln für Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mi 30.04.2014
Autor: DieAcht

Hallo Kolja und [willkommenmr]


> [mm]e^{2xy}*(x^{2}[/mm] + [mm]2*x*y^{2}+x^{5}*y)[/mm]
> ich habe verschiedene Formulierungen für die Ableitung
> gesehen. Etwa [mm]\bruch{d}{dx}[/mm] oder [mm]\bruch{\Delta y}{\Delta x}[/mm]

Mit

      [mm] \bruch{\Delta y}{\Delta x}=:m [/mm]

wird in der Regel die Steigung einer Gerade angegeben.

> oder f'(x). Wenn ich jetzt einfach nur nach x Ableiten
> möchte (was ich kann), welche dieser Schweibweisen muss
> ich verwenden, damit es vollständig und korrekt ist?

Die Antwort ist: Es kommt drauf an.

Wenn wir definieren

      [mm] $f:\IR^2\to\IR:(x,y)\mapsto e^{2xy}*(x^{2}+2*x*y^{2}+x^{5}*y)$, [/mm]

dann kannst du die Ableitung nicht so wie oben notieren.
Meinst du vielleicht mit der Ableitung die partiellen Ab-
leitungen? Wenn das der Fall ist, dann kannst du

      [mm] f_x=\frac{d}{dx}f=\frac{df}{dx} [/mm]

bzw.

      [mm] f_y=\frac{d}{dy}f=\frac{df}{dy} [/mm]

benutzen. Wenn dir das weiterhin unklar ist, dann frag ein-
fach nochmal nach.

Wenn wir aber definieren

      [mm] $f:\IR\to\IR:x\mapsto e^{2xy}*(x^{2}+2*x*y^{2}+x^{5}*y)$, [/mm]

(kurz: [mm] f(x):=e^{2xy}*(x^{2}+2*x*y^{2}+x^{5}*y)) [/mm]

wobei

      [mm] y\in\IR [/mm]

beliebig, aber fest ist, dann kannst du beispielsweise für
die Ableitung folgende Notationen

      [mm] $f'(x)=\frac{d}{dx}f=\frac{df}{dx}$ [/mm]

benutzen.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]