matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenf,g differenzíerbar, beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - f,g differenzíerbar, beweis
f,g differenzíerbar, beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f,g differenzíerbar, beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Di 03.02.2009
Autor: property_of_ned_flanders

Aufgabe
Die Funktionen f,g: (a,b) [mm] \to \IR [/mm] seien differenzierbar und es gelte f'(x)=g(x), g'(x)=f(x) für alle x [mm] \in [/mm] (a,b). Ferner sei [mm] f(x_{0})=1, g(x_{0})=0 [/mm] für ein [mm] x_{0} \in [/mm] (a,b). Beweise
[mm] f^2(x)-g^2(x)=1 [/mm] für alle x [mm] \in [/mm] (a,b).

Hallo,

ich habe obige Aufgabe und keine rechte Idee, wie ich da weiter kommen soll....

Habe schon mehrere Ansätze versucht:
mit dem Mittelwertsatz bin ich nicht weit gekommen...;
die eins auf der rechten Seite durch [mm] f^2(x_{0}) [/mm] zu ersetzen, hat mich auch nicht viel weitergebracht...;
und zu sagen für [mm] x_{0} [/mm] gilt die Gleichung ja und dann irgendwie mit dem Differenzenquotienten auf x zu kommen hat bei mir auch nicht geklappt ...    :-(

Jetzt sehe ich den Wald vor lauter Bäumen nicht mehr und wäre für einen Ansatz sehr dankbar.

Viele Grüße, Ned.

        
Bezug
f,g differenzíerbar, beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 03:05 Di 03.02.2009
Autor: felixf

Hallo

> Die Funktionen f,g: (a,b) [mm]\to \IR[/mm] seien differenzierbar und
> es gelte f'(x)=g(x), g'(x)=f(x) für alle x [mm]\in[/mm] (a,b).
> Ferner sei [mm]f(x_{0})=1, g(x_{0})=0[/mm] für ein [mm]x_{0} \in[/mm] (a,b).
> Beweise
>  [mm]f^2(x)-g^2(x)=1[/mm] für alle x [mm]\in[/mm] (a,b).
>  Hallo,
>  
> ich habe obige Aufgabe und keine rechte Idee, wie ich da
> weiter kommen soll....
>  
> Habe schon mehrere Ansätze versucht:
> mit dem Mittelwertsatz bin ich nicht weit gekommen...;
>  die eins auf der rechten Seite durch [mm]f^2(x_{0})[/mm] zu
> ersetzen, hat mich auch nicht viel weitergebracht...;
>  und zu sagen für [mm]x_{0}[/mm] gilt die Gleichung ja und dann
> irgendwie mit dem Differenzenquotienten auf x zu kommen hat
> bei mir auch nicht geklappt ...    :-(

Es geht viel einfacher. Du willst ja zeigen, dass die Funktion $h(x) := [mm] f^2(x) [/mm] - [mm] g^2(x) [/mm] - 1$ identisch 0 ist. Da diese Funktion differenzierbar ist (warum?), reicht es also aus [mm] $h(x_0) [/mm] = 0$ zu zeigen fuer ein festes [mm] $x_0$, [/mm] und $h'(x) = 0$ fuer alle $x$. (Mach dir klar warum!)

Oder hattet ihr diese Aussage noch nicht? In dem Fall wende doch mal den 1. Mittelwertsatz der Differentialrechnung auf $h$ an.

LG Felix


Bezug
                
Bezug
f,g differenzíerbar, beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:59 Di 03.02.2009
Autor: property_of_ned_flanders

Hallo Felix,

jetzt habe ich's geschnallt.

Danke, Ned.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]