f-Invariante Unterräume < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi.
Ich habe da eine Frage von etwas, das man zwar laut diversen Büchern "leicht einsieht", was mir aber noch nicht so klar ist.
Die Frage ist die folgende:
Sei Haup(f,t) Hauptraum von f zum Eigenwert t.
Im folgenden ist immer [mm] f:V\toV [/mm] linear
Dann gilt:
{0} = [mm] ker(f-t*id)^0 \subseteq [/mm] ker(f-t*id) [mm] \subseteq [/mm] ... [mm] \subseteq [/mm] Haup(f,t)
Warum gilt diese Kette? (Man findet sie so oder so ähnlich auch im Fischer bei der Einführung zur Jordan-Normalform)
Dann habe ich noch eine Frage zu dem folgenden Satz:
Seien [mm] h_1,h_2,...,h_k [/mm] Hauptvektoren von f zum Eigenwert t mit den Stufen [mm] s_1 \ge s_2 \ge [/mm] ... [mm] \ge s_k \ge [/mm] 1 so gegeben, dass
[mm] ((f-t*id)^{s_{j}-1})(h_{j}) [/mm] mit [mm] j\in [/mm] {1,...,k} eine linear unabhängige Familie ist. Dann ist die Familie der Vektoren [mm] c_{ij}:=((f-t*id)^{s_{j}-i})(h_j) [/mm] linear unabhängig, wobei [mm] \forall [/mm] j [mm] \in [/mm] {1,...k} der Index i in [mm] {1,...,s_j} [/mm] läuft.
Nun eine Anwendung dieses Satzes:
Sei h ein Hauptvektor von f mit Stufe s zum Eigenwert t.
Setze [mm] b_i [/mm] := [mm] ((f-t*id)^{s-i})(h) [/mm] mit i [mm] \in [/mm] {1,...,s}
Sei h ein Hauptvektor von f mit Stufe s.
So soll nach dem obigen Satz eine Basis [mm] B:=(b_1,...,b_s) [/mm] eines f-invarianten Unterraumes Q von V vorliegen.
Doch ich verstehe nicht warum? Warum ist das ein Unterraum und warum ist der f-invariant? Ich denke es hängt mit meiner ersten Frage zusammen.
Kann mir jemand das anschaulich erklären? So 100% ist mir nämlich die Bedeutung des Satzes noch nicht klar.
Ich hoffe ihr könnt mir helfen. Das wäre echt super!
Gruß
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 09.06.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|