extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:40 Di 26.02.2008 | Autor: | Simge |
Aufgabe | Ein kegel mit der Kantenlänge s= 12 cm soll ein möglichst großes Volumen haben. (aus der mittelstfe: Kegelvolumen, Satz des Pythagoras) |
hallo!
also erstens komme ich mit aufgaben, wie diese hier nicht klar. Deshalb wär es vielleicht auch sehr hilfreich, wenn mir jemand das anhand dieser aufabe erklären könnte.
also zuerst soll man eine Zielfunktion bilden.Das ist dann glaub ich V= [mm] \bruch{1}{3}\*\pi\*r^2\*h
[/mm]
so un djetzt muss mann r und h rausfinden, dass heißt ich muss den Satz des Pythagoras anwenden.
[mm] r^2= h^2+s^2
[/mm]
[mm] r^2= h^2+12^2 [/mm] die wurzel ziehen
r= h+12
so und das muss man in die Zielfunktion einsetzen? Wenn ja kommt bei mir was sehr merkwürdiges raus! Wäre sehr lieb wenn mir jemand das vorrechnen könnte, damit ich das nachvollziehen kann und das Prinzip verstehe.
Liebe Grüße
simge
|
|
|
|
Hi, Simge,
> Ein kegel mit der Kantenlänge s= 12 cm soll ein möglichst
> großes Volumen haben. (aus der mittelstfe: Kegelvolumen,
> Satz des Pythagoras)
>
> also erstens komme ich mit aufgaben, wie diese hier nicht
> klar. Deshalb wär es vielleicht auch sehr hilfreich, wenn
> mir jemand das anhand dieser aufgabe erklären könnte.
>
> also zuerst soll man eine Zielfunktion bilden.Das ist dann
> glaub ich V= [mm]\bruch{1}{3}\*\pi\*r^2\*h[/mm]
Passt scho!
> so und jetzt muss man r und h rausfinden, das heißt ich
> muss den Satz des Pythagoras anwenden.
Naja: Du musst halt sehen, dass Du einen Zusammenhang zwischen r und h findest, damit eines von beiden "verschwindet"!
> [mm]r^2= h^2+s^2[/mm]
Da zwischen h und r der rechte Winkel liegt, ist doch eher:
[mm] h^{2} [/mm] + [mm] r^{2} [/mm] = [mm] 12^{2} [/mm] = 144
<=> [mm] r^{2} [/mm] = 144 - [mm] h^{2}
[/mm]
> [mm]r^2= h^2+12^2[/mm] die wurzel ziehen
> r= h+12
HHHIIIIILLLLFFFFEEE !!!
Was ist denn da passiert?!
Mir klappt's die Zehennägel hoch!!!
Wo bleiben Deine Algebra-Kenntnisse?!
Seit wann kann man aus einer Summe die Wurzel ziehen?!
Ist etwa [mm] \wurzel{25} [/mm] = [mm] \wurzel{16+9} [/mm] = 4 + 3 = 7 ?!!
Mach' so was NIE, NIE WIEDER!
Vater Gauß dreht sich im Grabe rum!
Außerdem: Wozu das Ganze?!
In Deiner Formel für V kommt doch ein [mm] r^{2} [/mm] vor!
Setz' das doch einfach ein und Du kriegst eine wunderschöne Funktion in der Variablen h, nämlich (bereits verbessert!):
V(h) = [mm] \bruch{1}{3}*\pi*(144 [/mm] - [mm] h^{2})*h [/mm]
Jetzt brauchst Du "nur noch" eine geeignete Definitionsmenge - dann kann die eigentliche Aufgabe (Ableiten, Ableitung =0 setzen, Randvergleich) losgehen!
Zeig', was Du kannst, Junge (oder Mädel?)!
mfG!
Zwerglein
|
|
|
|