matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisexpz = lim(1+z/n)^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - expz = lim(1+z/n)^n
expz = lim(1+z/n)^n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

expz = lim(1+z/n)^n: Korrektur/Überprüfung
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 21.01.2006
Autor: Fei

Aufgabe
Zeigen Sie, dass die Exponentialfunktion
[mm] $\exp [/mm] z =  [mm] \limes_{n\rightarrow\infty}(1+\bruch{z}{n})^n$ [/mm]
erfüllt.

Hi Leute,

Hab mich an die Aufgabe rangesetzt, aber irgendwie schien mir das zu einfach... Hab bestimmt einen Fehler gemacht! Könnt ihr das bitte überprüfen bzw. verbessern? Danke!
[mm] |(1+\bruch{z}{n})^n-expz| [/mm]
= [mm] |\summe_{k=0}^{n} \pmat{n \\ k} \bruch{z^k}{n^k}-\summe_{k=0}^{\infty} \bruch{z^k}{k!}| [/mm]
[mm] \le |\summe_{k=0}^{n} z^k \bruch{1}{k!} -\summe_{k=0}^{\infty} \bruch{z^k}{k!}| \to [/mm] 0 für [mm] n\to\infty [/mm]

Wie gesagt, so einfach kann das nicht sein....
Danke für jede Hilfe!
Fei

        
Bezug
expz = lim(1+z/n)^n: editiert
Status: (Antwort) fertig Status 
Datum: 10:36 So 22.01.2006
Autor: Stefan

Hallo!

Der Beweis ist auf jeden Fall falsch.

Man kann es (falls man die Aussagen alle zur Verfügung hat), so beweisen:

Es genügt die Aussage für reelle Zahlen zu beweisen (Identitätssatz).

Wegen $ln'(x) = [mm] \frac{1}{x}$, [/mm]

also:

[mm] $\ln'\left( \frac{1}{x_0} \right) [/mm] = [mm] x_0$ [/mm] für ein festes [mm] $x_0$, [/mm]

folgt:

[mm] $\lim\limits_{n \to \infty} \left[ \frac{ \ln\left( \frac{1}{x_0} + \frac{1}{n} \right) - \ln \left( \frac{1}{x_0} \right)}{\frac{1}{n}} \right]= x_0$. [/mm]

Daraus kann man aber unmittelbar (durch Umstellen) die Behauptung folgern, wenn man die Stetigkeit der Exponentialfunktion ausnutzt...

Liebe Grüße
Stefan

Bezug
        
Bezug
expz = lim(1+z/n)^n: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 15:10 So 22.01.2006
Autor: Fei

Hi,

Danke erstmal für deine Antwort.
Das Ding ist, ich versteh das Problem nicht, wieso das nicht gehen sollte, d.h. wo genau der Fehler liegt bei der Rechnung.

Wir haben von unserem Professor auch folgende Hilfestellung bekommen, was auch von meiner Überlegung abweicht:

[mm]|(1+\bruch{z}{n})^n-expz|[/mm]
= [mm] |\summe_{k=0}^{n} \pmat{n \\ k} \bruch{z^k}{n^k}-\summe_{k=0}^{\infty} \bruch{z^k}{k!}| [/mm]
[mm] \le \summe_{k=0}^{N} |\pmat{n \\ k} \bruch{z^k}{n^k}-\bruch{z^k}{k!}| [/mm] + [mm] \summe_{k=N+1}^{n} |\pmat{n \\ k} \bruch{z^k}{n^k}| [/mm] + [mm] \summe_{k=N+1}^{\infty} |\bruch{z^k}{k!}| [/mm]
und wählen Sie N in Abstimmung mit einem vorgegebenem [mm] \varepsilon [/mm]

Die Vorgehensweise ist ja leicht zu verstehen, da wurde ja nur die Summe geteilt und dann durch die Dreicksungleichung abgeschätzt. Aber der Satz "wählen Sie N in Abstimmung mit einem vorgegebenem [mm] \varepsilon [/mm] " verstehe ich nicht.
Man kann ja nun den ersten Summanden abschätzen, d.h.
[mm] \le \summe_{k=0}^{N} |\bruch{z^k}{k!}-\bruch{z^k}{k!}| [/mm] + [mm] \summe_{k=N+1}^{n} |\pmat{n \\ k} \bruch{z^k}{n^k}| [/mm] + [mm] \summe_{k=N+1}^{\infty} |\bruch{z^k}{k!}| [/mm]
= [mm] \summe_{k=N+1}^{n} |\pmat{n \\ k} \bruch{z^k}{n^k}| [/mm] + [mm] \summe_{k=N+1}^{\infty} |\bruch{z^k}{k!}| [/mm]
Weiter komme ich aber nicht mehr; die restlichen beiden Summanden scheinen nicht gegen Null zu konvergieren; hab ich etwa schon zuviel abgeschätzt?

Danke für die Hilfe!

Bezug
                
Bezug
expz = lim(1+z/n)^n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 24.01.2006
Autor: PStefan

Hallo!

Leider konnte dir keiner, innerhalb der von dir vorgegebenen Zeit antworten. Nun muss ich deine Frage für Interessierte markieren.

Vielleicht hast du nächstes Mal mehr Glück. [kleeblatt]

Liebe Grüße
PStefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]