matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenexponentialfunktion berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - exponentialfunktion berechnen
exponentialfunktion berechnen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exponentialfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Do 30.11.2006
Autor: affekt

Aufgabe
Löse folgende Exponentialgleichung möglichst einfach:
[mm] 5*e^x [/mm] = [mm] 10^x [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich komme leider gerade nicht drauf und brauche dringend eine Lösung. ich hab es so versucht:
Zunächst teile ich durch 5 und erhalte [mm] e^x [/mm] = [mm] 2^x [/mm]  ,
dann logrithmiere ich und bekomme x*log (e) = x*log(2) . Irgendwas sagt mir,dass das falsch ist und auf das x komme ich auf dem Weg auch nicht.
Bitte um schnelle Antwort.

        
Bezug
exponentialfunktion berechnen: Fehler
Status: (Antwort) fertig Status 
Datum: 22:51 Do 30.11.2006
Autor: Loddar

Hallo affekt!


Zum einen gilt eindeutig [mm] $\bruch{10^x}{5} [/mm] \ [mm] \red{\not=} [/mm] \ [mm] 2^x$ [/mm] !!!


Wandle hier eine der beiden Potenzen um in dieselbe Basisi wie die andere; z.B.:

$10 \ = \ [mm] e^{\ln(10)}$ $\Rightarrow$ $10^x [/mm] \ = \ [mm] \left[ \ e^{\ln(10)} \ \right] [/mm] \ = \ [mm] e^{x*\ln(10)}$ [/mm]


Damit wird Deine Gleichung zu:

[mm] $5*e^x [/mm] \ = \ [mm] e^{x*\ln(10)}$ $\left| \ : \ e^x$ $5 \ = \ e^{x*\ln(10)-x} \ = \ e^{x*[\ln(10)-1]}$ Schaffst Du den Rest nun alleine? Gruß Loddar [/mm]

Bezug
                
Bezug
exponentialfunktion berechnen: zu kompliziert!?
Status: (Frage) beantwortet Status 
Datum: 23:18 Do 30.11.2006
Autor: affekt

mir erscheint der ansatz recht kompliziert..die aufgabenstellung verlangt eine möglichst einfache lösung. gibt es denn keine einfachere möglichkeit? ich bin auch nicht in der lage den rest selbst zu lösen, als ich bitte darum es weiter zu führen oder eine andere variante vorzuschlagen.
danke

Bezug
                        
Bezug
exponentialfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 01.12.2006
Autor: Sigma

Hallo,

ich versuche mal einen anderen Lösungsweg.
Ich hoffe aber, dass dir die Logarithmengesetzte geläufig sind.

[mm]5e^x=10^x[/mm]  | Log zur Basis e
[mm]Log[5e^x]=Log[10^x][/mm]
[mm]Log[5]+Log[e^x]=x*Log[10][/mm]
[mm]Log[5]+x*Log[e]=x*Log[10][/mm]
[mm]Log[5]+x*1=x*Log[10][/mm]
[mm]Log[5]=x*(Log[10]-1)[/mm]
[mm]x=\bruch{Log[5]}{Log[10]-1}[/mm]
[mm]x=1.23557[/mm]

mfg

Sigma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]