matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10exponenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - exponenten
exponenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exponenten: koeffizienten
Status: (Frage) beantwortet Status 
Datum: 15:00 Sa 26.01.2013
Autor: b.reis

Aufgabe
[mm] (2x^{2})^{2} [/mm]

Hallo ich komm grerade nicht weiter und muss somit diese Frage stellen.

[mm] (2x^{2})^{2} [/mm] wird hier der Koeffizient mit potenziert, also [mm] 2^{2}*x^{2*2} [/mm]

danke

Benni

        
Bezug
exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Sa 26.01.2013
Autor: M.Rex

Hallo


> [mm](2x^{2})^{2}[/mm]
>  Hallo ich komm grerade nicht weiter und muss somit diese
> Frage stellen.
>  
> [mm](2x^{2})^{2}[/mm] wird hier der Koeffizient mit potenziert, also
> [mm]2^{2}*x^{2*2}[/mm]

Es gilt:

[mm] $(2x^{2})^{2}=2^{2}\cdot(x^{2})^{2}=4x^{4}$ [/mm]

>  
> danke
>  
> Benni

Mach dir unbedingt die Potenzgesetze klar:

gleiche Exponenten
[mm] $(a\cdot b)^{n}=a^{n}\cdot b^{n}$ [/mm]
[mm] \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} [/mm]

Gleiche Basen:
[mm] a^{m}\cdot a^{n}=a^{m+n} [/mm]
[mm] \frac{a^{m}}{a^{n}}=a^{m-n} [/mm]

Doppeltes Potenzieren
[mm] (a^{m})^{n}=a^{m\cdot n} [/mm]

negativer Exponent.
[mm] a^{-n}=\frac{1}{a^{n}} [/mm]

Exponent Null
[mm] a^{0}=1 [/mm]

Marius



Bezug
                
Bezug
exponenten: a*b
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Sa 26.01.2013
Autor: b.reis

hallo, und danke für deine Antwort.

Mir war eben nicht klar ob es sich hierbei um a*b handelt da b ja schon einen Exponenten hat.

Aber danke jetzt weiß ich das


Ciao

benni

Bezug
                        
Bezug
exponenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Sa 26.01.2013
Autor: M.Rex


> hallo, und danke für deine Antwort.
>  
> Mir war eben nicht klar ob es sich hierbei um a*b handelt
> da b ja schon einen Exponenten hat.
>  

a und b sind nur Platzhalter, auch Terne á la
[mm] (x+2)^2\cdot(x-3)^{2} [/mm] kannst du mit dem Potenzgesetz bearbeiten.

> Aber danke jetzt weiß ich das
>  
>
> Ciao
>  
> benni

Marius


Bezug
        
Bezug
exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 26.01.2013
Autor: Richie1401

Hallo,

auf die Lösung hättest du auch schnell selbst kommen können:

[mm] (2x^2)^2=(2x^2)*(2x^2)=2*x^2*2*x^2=2*2*x^2*x^2=2^2*\underbrace{(x^2)^2}_{=x^{2+2}}=4x^4 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]