matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisexp von jordanmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - exp von jordanmatrix
exp von jordanmatrix < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp von jordanmatrix: Frage
Status: (Frage) beantwortet Status 
Datum: 21:11 So 08.05.2005
Autor: VHN

Hallo, leute!

ich soll hier eine aufgabe lösen, allerdings ist mir nicht ganz klar, was oder wie ich genau ich das machen soll. ich hoffe, ihr könnt mir bitte weiterhelfen.

Also, ich soll nämlich exp(A) berechnen, wobei A eine Jordanmatrix ist, d.h. doch, dass A folgende Gestalt hat: (A [mm] \in \IC^{n,n}) [/mm]
A =  [mm] \pmat{ \lambda & 1 & 0 & 0 & ... & 0 \\ 0 & \lambda & 1 & 0 & ... & 0 \\ ... & & & & & & \\ 0 & ... & 0 & 0 & 0 & \lambda } [/mm]
(in der Diagonalen stehen [mm] \lambda, [/mm] und der Nebendiagonale darüber stehen überall 1)

Ich weiß nun, dass exp(A) = [mm] e^{A} [/mm] wie folgt definiert ist:
[mm] e^{A} [/mm] = [mm] \summe_{k=1}^{n} \bruch{1}{k!} A^{k}. [/mm]

Aber was muss ich jetzt genau machen? Soll ich jetzt exp(A) für k=2,3 usw. ausprobieren, und schauen, ob ich irgendeine regelmäßigkeit entdecke und dann daraus eine formel herleiten?

ich weiß hier echt nicht, wie ich anfangen soll. bitte gebt mir einen tipp, wie ich dieses problem hier lösen kann.

Liebe Grüße
VHN


        
Bezug
exp von jordanmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 So 08.05.2005
Autor: Crispy

Hallo VHN,
> Also, ich soll nämlich exp(A) berechnen, wobei A eine
> Jordanmatrix ist, d.h. doch, dass A folgende Gestalt hat:
> (A [mm]\in \IC^{n,n})[/mm]
>  A =  [mm]\pmat{ \lambda & 1 & 0 & 0 & ... & 0 \\ 0 & \lambda & 1 & 0 & ... & 0 \\ ... & & & & & & \\ 0 & ... & 0 & 0 & 0 & \lambda }[/mm]
>  
> (in der Diagonalen stehen [mm]\lambda,[/mm] und der Nebendiagonale
> darüber stehen überall 1)
>  
> Ich weiß nun, dass exp(A) = [mm]e^{A}[/mm] wie folgt definiert ist:
>  [mm]e^{A}[/mm] = [mm]\summe_{k=1}^{n} \bruch{1}{k!} A^{k}.[/mm]
>  
> Aber was muss ich jetzt genau machen? Soll ich jetzt exp(A)
> für k=2,3 usw. ausprobieren, und schauen, ob ich irgendeine
> regelmäßigkeit entdecke und dann daraus eine formel
> herleiten?

Wenn man nicht weiter weiß, ist das ja mal eine Idee. Man stellt dann recht schnell fest, welche Regelmäßigkeit sich da ergibt.
Vielleicht mal mit n=3 anfangen.
Eine sinnvolle Überlegung ist: Was ergibt A*A, was A*A*A.

Es ist dann ganz einfach.

Gruss, Crispy

Bezug
                
Bezug
exp von jordanmatrix: frage zu antwort
Status: (Frage) beantwortet Status 
Datum: 23:25 So 08.05.2005
Autor: VHN

hallo, crispy!

Danke für deine antwort.

Zunächst möchte ich aber erst zwei Fehler in meiner vorigen Frage beseitigen. es heißt nämlich: [mm] e^{A} [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} A^{k}. [/mm] also mit [mm] \infty [/mm] über dem summenzeichen (und nicht n), und k fängt bei 0 an, und nicht bei 1. sorry! :-)

ich habe es nun mit einer 3,3-jordan-matrix versucht, und [mm] A^{2} [/mm] sowie
[mm] A^{3} [/mm] berechnet und habe folgendes festgestellt:

[mm] e^{A} [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} A^{k} [/mm]
= [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} \pmat{ \lambda^{k} & k\lambda^{k-1} & k\lambda^{k-2} & ... & k\lambda & 1 \\ 0 & lambda^{k} & k\lambda^{k-1} & ... & ... & k\lambda \\ ... \\ 0 & ... & \lambda^{k}} [/mm]

So, das habe ich als regelmäßigkeit nun festgestellt. Und nun? Wie berechne ich jetzt konkret exp(A)?

Ich hoffe, du verstehst mein Problem. Danke schön!
VHN

Bezug
                        
Bezug
exp von jordanmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 09.05.2005
Autor: Julius

Hallo!

Deine Lösung stimmt nicht so ganz.

Ist [mm] $J_m(\lambda)$ [/mm] eine Jordan-Matrix mit $m$-mal [mm] $\lambda$ [/mm] auf der Diagonalen und $1$en auf der unteren Nebendiagonalen, so gilt:

[mm] $\exp(J_m(\lambda)) [/mm] = [mm] e^{\lambda} \cdot \pmat{ \frac{1}{0!} & 0 & 0 & \ldots & 0 \\ \frac{1}{1!} & \frac{1}{0!} & \ddots & \ddots & 0 \\ \frac{1}{2!} & \frac{1}{1!} & \ddots & \ddots& \vdots\\ \vdots & \ddots & \ddots & \ddots & 0 \\ \frac{1}{(m-1)!} & \ldots & \frac{1}{2!} & \frac{1}{1!} & \frac{1}{0!}}$. [/mm]

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]