matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesexistiert keine Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - existiert keine Gerade
existiert keine Gerade < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existiert keine Gerade: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:53 Sa 08.11.2008
Autor: Mathias_Mathe

Aufgabe
Sei S eine beliebige nichtleere Teilmenge von [mm] \IR^{n}. [/mm] Zeige Sie, dass die Menge
F= {x € [mm] \IR^{n}:x \in [/mm] S,x [mm] \ge [/mm] 0}
keine Gerade enthält.

Hallo

Ich habe diese Aufgabe benahe gelösst. Dies ist mein Lösungsanfang

Annahem: es existiert mindestens 1. Gerade

(1- [mm] \lambda [/mm] ) [mm] x^{1} [/mm] + [mm] \lambda x^{2} [/mm] €P
[mm] \Rightarrow \lambda \ge [/mm] 0 ansonsten [mm] x^{2} [/mm] < 0

da 0 € F ist, wähle [mm] x^{2}=0 [/mm]
[mm] \Rightarrow (1-\lambda), [/mm] da [mm] \lambda \ge [/mm] 0 [mm] \Rightarrow [/mm] (1- [mm] \lambda)x^{1} [/mm] kein Element von P, da (1- [mm] \lambda)<0 [/mm] ist.

Das einzige Problem ist, wenn 0 [mm] \le \lambda \le [/mm] 1 ist.

Ist mein Ansatz so richtig? Und kann mit jemand noch einen Tip geben für den letzten Teil?

Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
existiert keine Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 08.11.2008
Autor: Al-Chwarizmi

Aufgabe
  Sei S eine beliebige nichtleere Teilmenge von [mm] \IR^n. [/mm]
Zeige Sie, dass die Menge
$\ F= [mm] \{x \in\IR^n:x \in S,x \ge 0\}$ [/mm]
keine Gerade enthält.
  


Hallo Mathias

Für [mm] x\in\IR^n [/mm]  ist die Relation  [mm] x\ge [/mm] 0 gar nicht definiert.

Was ist genau gemeint ??

(und verwende doch für die Elementrelation nicht das
Eurosymbol, sondern das Symbol  [mm] "\in" [/mm]    ( TeX:  [mm] "\backslash{in}" [/mm]  )


Gruß




Bezug
                
Bezug
existiert keine Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:16 So 09.11.2008
Autor: Mathias_Mathe

Hallo

Danke für die Antwort. Ich habe die Angabe genau von dem Blatt kopiert.
So wie ich es verstanden habe, ist damit alles im positiven Bereich gemeint.Leider kann ich keine Zeichung posten, da es daran am einfachsten zu erklären ist.

Lg

Bezug
                        
Bezug
existiert keine Gerade: Beweis
Status: (Antwort) fertig Status 
Datum: 10:39 So 09.11.2008
Autor: Al-Chwarizmi


> Hallo
>  
> Danke für die Antwort. Ich habe die Angabe genau von dem
> Blatt kopiert.
>  So wie ich es verstanden habe, ist damit alles im
> positiven Bereich gemeint.


hallo Mathias

So wie die Aufgabe da steht:

Aufgabe
Sei S eine beliebige nichtleere Teilmenge von [mm] \IR^{n}. [/mm] Zeige Sie, dass die Menge
F= {x € [mm] \IR^{n}:x \in [/mm] S,x [mm] \ge [/mm] 0}
keine Gerade enthält.


macht sie keinen Sinn. Das ist also wieder einer der
Fälle, wo man zuerst die Aufgabenstellung verbessern
muss, bevor man wirklich an die Lösung gehen kann.
(Bitte dies dem Urheber der Aufgabe mitzuteilen !)

Ich kann mir nur vorstellen, dass gemeint ist, dass
alle einzelnen Komponenten von x nichtnegativ sein
sollen, also wäre

       $\ F= [mm] \{x \in \IR^{n}:x \in S, \ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, ... , \ x_n \ge 0\}$ [/mm]


Im [mm] \IR^1 [/mm] wäre dies die positive Halbgerade, im [mm] \IR^2 [/mm] der
erste Quadrant, im [mm] \IR^3 [/mm] der erste Oktant, etc.

Zu beweisen bleibt dann, wie du schon gesehen hast,
folgende Aussage:

"Sind A und B zwei Punkte in F, so gibt es auf der
Geraden AB einen Punkt, der nicht in F liegt, der
also wenigstens eine negative Koordinate hat."

Dies kann man so einsehen:

Enthielte F eine Gerade, so wären darauf zwei
voneinander verschiedene Punkte A und B zu finden.
Weil [mm] A\not=B, [/mm] müssten sie sich in mindestens einer
der n Koordinaten unterscheiden. Sei z.B. [mm] x_i(A)=a [/mm]
und [mm] x_i(B)=b [/mm] mit a<b (andernfalls: Bezeichnungen
vertauschen!).
Nun geben wir einen Punkt P auf AB an, für den
[mm] x_i(P)=p<0 [/mm] ist:

     [mm] P=A+t*\overrightarrow{AB} [/mm] mit [mm] t=\bruch{b}{a-b} [/mm]

ist ein solcher Punkt, denn  

  [mm] x_i(P)=p=x_i(A)+t*(x_i(B)-x_i(A))=a+\bruch{b}{a-b}*(b-a)=a-b<0 [/mm]


Gruß    Al-Chw.



  


Bezug
                                
Bezug
existiert keine Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Di 11.11.2008
Autor: Mathias_Mathe

vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]