matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationexistiert das Integral?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - existiert das Integral?
existiert das Integral? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existiert das Integral?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 08.01.2008
Autor: ONeill

Aufgabe
Man überprüfe, welches der Nachfolgenden Integrale existiert:
[mm] a.)\integral_{\infty}^{0}{sin(x) dx} [/mm]
[mm] b.)\integral_{\infty}^{1}{\bruch{1}{x^2+ln(x)} dx} [/mm]
c.) [mm] \integral_{1}^{0}{\bruch{sin(x)}{x} dx} [/mm]

Hallo!
Bei den oben genannten Aufgaben habe ich Probleme.
a.) Da sin(x) eine periodische Funktion ist und zwischen +/- 1 alterniert bildet sich kein Grenzwert und somit kann ich das uneigentliche Integral nicht bestimmen, richtig?
b.)Ich weiß nicht wie ich das Integrieren soll...partielle Integration oder Substitution? Habe beides probiert, ohne Ergebnis.
c.)Da ein x im Nenner steht würde ich mal sagen, dass mit steigenden x Werten sich ein Grenzwert bildet und somit das Integral existiert, aber auch hier schaffe ich nicht den Therm zu integrieren.

Kann da jemand weiterhelfen? Viele Dank für die Mühe!
Gruß ONeill

        
Bezug
existiert das Integral?: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 19:00 Di 08.01.2008
Autor: Loddar

Hallo ONeill!


Bei Aufgabe a.) solltest Du das aber auch vielleicht rechnerisch zeigen:
[mm] $$\integral_{\infty}^{0}{\sin(x) \ dx} [/mm] \ = \ [mm] -\integral_{0}^{\infty}{\sin(x) \ dx} [/mm] \ = \ [mm] -\limes_{A\rightarrow\infty}\integral_{0}^{A}{\sin(x) \ dx} [/mm] \ = \ [mm] -\limes_{A\rightarrow\infty}\left[ \ -\cos(x) \ \right]_{0}^{A} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
        
Bezug
existiert das Integral?: Aufgabe b.)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 08.01.2008
Autor: Loddar

Hallo ONeill!


Steht da im Nenner tatsächlich ein Pluszeichen oder nicht doch ein Malzeichen?


Gruß
Loddar


Bezug
        
Bezug
existiert das Integral?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 08.01.2008
Autor: HJKweseleit

Es ist gar nicht deine Aufgabe, die Integration durchzuführen, sondern nur eine Aussage über die Existenz des Integrals zu treffen.

a) geklärt

>  
> [mm]b.)\integral_{\infty}^{1}{\bruch{1}{x^2+ln(x)} dx}[/mm]

=[mm]-\integral_{1}^{\infty}{\bruch{1}{x^2+ln(x)} dx}[/mm]
Weil [mm] x^2 [/mm] und ln(x) beide positiv sind und damit auch der Integrand, ist

[mm]-F(t)=\integral_{1}^{t}{\bruch{1}{x^2+ln(x)} dx}[/mm] eine in t monoton steigende Funktion. Es ist nur noch zu zeigen, dass es hierfür eine obere Schranke gibt, dann muss [mm] \limes_{t\rightarrow\infty} [/mm] -F(t) und damit das Integral existieren.

Nun ist aber [mm]\integral_{1}^{t}{\bruch{1}{x^2+ln(x)} dx}<\integral_{1}^{t}{\bruch{1}{x^2} dx}=-1/x [/mm]  von 1 bis t = 1-1/t und damit
[mm]\integral_{1}^{\infty}{\bruch{1}{x^2+ln(x)} dx}<1[/mm]

>  c.)
> [mm]\integral_{1}^{0}{\bruch{sin(x)}{x} dx}[/mm]

Der Integrand ist ebenfalls positiv, außerdem existiert der Grenzwert [mm] \limes_{x\rightarrow 0} \bruch{sin(x)}{x}=1. [/mm] Die Integrandenfunktion ist stetig und beschränkt und positiv, daher ist die Integralfunktion wie oben definiert und monoton steigend, aber beschränkt, also existiert sie.


Bezug
                
Bezug
existiert das Integral?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 09.01.2008
Autor: ONeill

Schönen Dank euch beiden für die Hilfe!
Gruß ONeill

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]