matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwerteexistenzbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - existenzbeweis
existenzbeweis < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existenzbeweis: eigenwerte,diagonalisierbar
Status: (Frage) beantwortet Status 
Datum: 17:38 So 31.05.2009
Autor: simplify

Aufgabe
Sei A [mm] \in [/mm] M(n x n ; [mm] \IR) [/mm] eine Matrix und p,q [mm] \in \IZ [/mm] mit q>0.
Unter [mm] A^{\bruch{p}{q}} [/mm] verstehen wir eine Matrix B , für die [mm] B^{q} [/mm] = [mm] A^{p} [/mm] gilt.
Zeige dass [mm] A^{\bruch{p}{q}} [/mm] existiert falls A diagonalisierbar ist und nur nicht negative Eigenwerte besitzt.

hey leute,
ich hab keine ahnung wieso dass so sein soll und wie ich das dann zeigen soll.
vielen dank für eure mühe im voraus
LG


        
Bezug
existenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 31.05.2009
Autor: schotti

ohne details, aber die idee ist sicher etwa folgende:

stell dir die matrix A in der basis vor, worin sie diagonalform hat. dort wählst du als matrix B ebenfalls eine diagonalmatrix, und zwar diejenige, deren einträge b_ii auf den diagonalen genau die enstprechenden wurzeln (a_ii)^(p/q) aus den diagonalelementen von A sind. dann denkst du dir B allenfalls noch zurücktransformiert.

jetzt müsstest du halt noch zeigen, dass die so definierte matrix B deine bedingungen erfüllt...

Bezug
                
Bezug
existenzbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 02.06.2009
Autor: simplify

O.K. danke. hab jedoch nicht verstanden wie ich zeigen soll dass [mm] A^{p/q} [/mm] diagonalisierbar sein muss.
LG

Bezug
                        
Bezug
existenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 03.06.2009
Autor: angela.h.b.


> O.K. danke. hab jedoch nicht verstanden wie ich zeigen soll
> dass [mm]A^{p/q}[/mm] diagonalisierbar sein muss.
>  LG

Hallo,

schade, daß Du nicht aufgeschreiben hast, was Du aus schottis beweisskizze bisher gemacht hast. Dann könnte man viel besser helfen.

Zu zeigen ist ja dies:

Wenn A diagonalisierbar ist und alle Eigenwerte nichtnegativ sind, dann gibt es zu p,q [mm] \in \IZ [/mm] eine Matrix B mit [mm] b^q=A^p. [/mm]


Zu  Beweis: Sei A diagonalisierbar. Dann gibt es eine invertierbare Matrix  T mit ....

Was hast Du jetzt weiter getan? Schildere das mal.


Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]