matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenexakte DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - exakte DGL
exakte DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exakte DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 20.11.2020
Autor: rubi

Hallo zusammen,

ich habe eine Frage zu exakten DGL.

Folgende DGL liegt vor:
y' - 3xy' = 1-2y  

Wenn ich diese umforme erhalte ich: (1-3x)y' + 2y - 1 = 0
Daraus folgt: (1-3x)dy + (2y-1)dx = 0    (1)

Ableiten von 1- 3x nach x ergibt -3:
Ableiten von 2y - 1 nach y ergibt 2.
Da die Ableitungen nicht übereinstimmen ist die DGL nicht exakt.

Nun folgende Frage:
Wenn ich die Gleichung (1) durch (1-3x) und (2y-1) dividiere erhalte ich
[mm] \bruch{1}{2y-1}*dy+\bruch{1}{1-3x}*dx [/mm] = 0

Wenn ich nun [mm] \bruch{1}{2y-1} [/mm] nach x ableite ergibt sich 0.
Wenn ich [mm] \bruch{1}{1-3x} [/mm] nach y ableite ergibt sich 0.
Somit wäre vom Ergebnis her die DGL exakt, obwohl ich von oben weiß, dass dies nicht der Fall ist.

Warum darf ich die DGL nicht durch (1-3x) bzw. (2y-1) dividieren ?
Wenn ich die DGL löse durch Trennung der Variablen sind solche Divisionen ja auch möglich.

Vielen Dank für Eure Antworten !

Viele Grüße
Rubi


        
Bezug
exakte DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 21.11.2020
Autor: fred97


> Hallo zusammen,
>
> ich habe eine Frage zu exakten DGL.
>
> Folgende DGL liegt vor:
> y' - 3xy' = 1-2y  
>
> Wenn ich diese umforme erhalte ich: (1-3x)y' + 2y - 1 = 0
>  Daraus folgt: (1-3x)dy + (2y-1)dx = 0    (1)
>  
> Ableiten von 1- 3x nach x ergibt -3:
>  Ableiten von 2y - 1 nach y ergibt 2.
>  Da die Ableitungen nicht übereinstimmen ist die DGL nicht
> exakt.
>
> Nun folgende Frage:
> Wenn ich die Gleichung (1) durch (1-3x) und (2y-1)
> dividiere erhalte ich
>  [mm]\bruch{1}{2y-1}*dy+\bruch{1}{1-3x}*dx[/mm] = 0
>  
> Wenn ich nun [mm]\bruch{1}{2y-1}[/mm] nach x ableite ergibt sich 0.
> Wenn ich [mm]\bruch{1}{1-3x}[/mm] nach y ableite ergibt sich 0.
> Somit wäre vom Ergebnis her die DGL exakt, obwohl ich von
> oben weiß, dass dies nicht der Fall ist.
>
> Warum darf ich die DGL nicht durch (1-3x) bzw. (2y-1)
> dividieren ?
> Wenn ich die DGL löse durch Trennung der Variablen sind
> solche Divisionen ja auch möglich.

Ich verstehe Dein Problem nicht.  Du hast doch einen integrierenden Faktor gefunden,  der aus der ursprünglichen nicht exakten Dgl. eine exakte Dgl.  macht.


>
> Vielen Dank für Eure Antworten !
>  
> Viele Grüße
>  Rubi
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]