matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahleneulersche -> kartesische form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - eulersche -> kartesische form
eulersche -> kartesische form < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eulersche -> kartesische form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 11.03.2013
Autor: koa24

Aufgabe
Berechnen Sie: [mm] (2e^{-i\bruch{\pi}{6}})^8 [/mm]


Ich bräuchte kurz eine helfende Hand bei der oberen Aufgabe...

Die Lösung habe ich zwar nur komme ich irgendwie nicht weiter :/

Lösung: [mm] -2^7+2^7\wurzel{3} [/mm]

Lösungansatz:

[mm] (2e^{-i\bruch{\pi}{6}})^8 [/mm] = [mm] 2^8\*e^{-i\bruch{8\*\pi}{6}} [/mm] = [mm] 2^8 (cos(\bruch{4\*\pi}{3})-sini(\bruch{4\*\pi}{3})) [/mm] = [mm] -2^7 [/mm] + 221,... oder = die Lösung da Oben

@google fand ich:
http://www.schule-studium.de/Mathe/Sinus-und-Kosinus-funktionen.html

mit zwei Tabellen für sin und cos z.B. für [mm] \bruch{\pi}{6} [/mm] oder [mm] \bruch{5\pi}{6} [/mm]
alles prima nur fand ich nichts für: [mm] \bruch{4\*\pi}{3} [/mm]

Also Frage: Wie komme ich schnell (klausur) ohne auswendig lernen oder tabelle auf die obere Lösung?
Oder würdet ihr sagen 221,...  reicht und punkt ist.

Wenn auswendig lernen: Wo befindet sich eine "ausreichende" tabelle?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
eulersche -> kartesische form: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 11.03.2013
Autor: MathePower

Hallo koa24,


[willkommenmr]


> Berechnen Sie: [mm](2e^{-i\bruch{\pi}{6}})^8[/mm]
>  
> Ich bräuchte kurz eine helfende Hand bei der oberen
> Aufgabe...
>  
> Die Lösung habe ich zwar nur komme ich irgendwie nicht
> weiter :/
>  
> Lösung: [mm]-2^7+2^7\wurzel{3}[/mm]
>  
> Lösungansatz:
>  
> [mm](2e^{-i\bruch{\pi}{6}})^8[/mm] = [mm]2^8\*e^{-i\bruch{8\*\pi}{6}}[/mm] =
> [mm]2^8 (cos(\bruch{4\*\pi}{3})-sini(\bruch{4\*\pi}{3}))[/mm] = [mm]-2^7[/mm]
> + 221,... oder = die Lösung da Oben
>  
> @google fand ich:
>  
> http://www.schule-studium.de/Mathe/Sinus-und-Kosinus-funktionen.html
>  
> mit zwei Tabellen für sin und cos z.B. für [mm]\bruch{\pi}{6}[/mm]
> oder [mm]\bruch{5\pi}{6}[/mm]
>  alles prima nur fand ich nichts für: [mm]\bruch{4\*\pi}{3}[/mm]

>


Es ist doch

[mm]\bruch{4\pi}{3}=\bruch{3\pi}{3}+\bruch{\pi}{3}=\pi+\bruch{\pi}{3}[/mm]

Damit sollte die Berechnung von [mm]\sin\left(\bruch{4\pi}{3}\right)[/mm]
bzw. [mm]\cos\left(\bruch{4\pi}{3}\right)[/mm] kein Problem mehr darstellen.


> Also Frage: Wie komme ich schnell (klausur) ohne auswendig
> lernen oder tabelle auf die obere Lösung?
>  Oder würdet ihr sagen 221,...  reicht und punkt ist.
>  
> Wenn auswendig lernen: Wo befindet sich eine "ausreichende"
> tabelle?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
        
Bezug
eulersche -> kartesische form: kleine Korrektur
Status: (Antwort) fertig Status 
Datum: 19:00 Mo 11.03.2013
Autor: Loddar

Hallo koa24,

[willkommenmr] !!


> Lösung: [mm]-2^7+2^7\wurzel{3}[/mm]

Hier fehlt aber noch ein $i_$ .


> Lösungansatz:
>  
> [mm](2e^{-i\bruch{\pi}{6}})^8[/mm] = [mm]2^8\*e^{-i\bruch{8\*\pi}{6}}[/mm] = [mm]2^8 (cos(\bruch{4\*\pi}{3})-sini(\bruch{4\*\pi}{3}))[/mm] = [mm]-2^7[/mm] + 221,...

Ebenso wie hier (bzw. sollte man es VOR den [mm] $\sin$ [/mm] schreiben).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]