matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiseulerische zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - eulerische zahl
eulerische zahl < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eulerische zahl: Frage
Status: (Frage) für Interessierte Status 
Datum: 09:39 Do 23.12.2004
Autor: Carina

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

in dieser Aufgabe soll schrittweise  [mm] \limes_{n\rightarrow\infty}(1+r/n)hochn [/mm] = e hoch r für r Element  [mm] \IQ [/mm] gezeigt werden:
a) [mm] \limes_{n\rightarrow\infty} [/mm] (1*k/n) hoch n = e hoch k für k Element [mm] \IN [/mm] ( hinweis: Vollständige Induktion!!!)
B) [mm] \limes_{n\rightarrow\infty} [/mm] (1- 1/n) hoch n = 1/e (HInweis Zeigen sie zunächst : [mm] \limes_{n\rightarrow\infty}(1- [/mm] 1/nhoch 2)hoch n =1)

c) [mm] \limes_{n\rightarrow\infty}(1+ [/mm] q/n) hoch n= e hoch q für q element  [mm] \IQ [/mm]





d)  [mm] \limes_{n\rightarrow\infty} [/mm] (1+ r/n) hoch n = e hoch r für r element


        
Bezug
eulerische zahl: Rückfrage+Hinweise
Status: (Antwort) fertig Status 
Datum: 15:24 Do 23.12.2004
Autor: Marcel

Hallo Carina,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> in dieser Aufgabe soll schrittweise  
> [mm]\limes_{n\rightarrow\infty}(1+r/n)hochn[/mm] = e hoch r für r
> Element  [mm]\IQ[/mm] gezeigt werden:

Soll das vielleicht $r [mm] \in \IR$ [/mm] am Ende heißen?

>  a) [mm]\limes_{n\rightarrow\infty}[/mm] (1*k/n) hoch n = e hoch k
> für k Element [mm]\IN[/mm] ( hinweis: Vollständige Induktion!!!)

Da sollte wohl [m]\limes_{n \to \infty}\left(1\red{+}\frac{k}{n}\right)^{n}[/m] stehen. Ich nehme an, dir ist bekannt, dass [m]\limes_{n \to \infty}\left(1+\frac{1}{n}\right)^n=e^1[/m] gilt.
Wenn du den Hinweis nicht wirklich verstehst, dann etwas deutlicher:
Induktion über $k$.

[ Nachtrag:Hm, okay, ich denke, das ist vielleicht doch ein bisschen wenig und irgendwie finde ich den Tipp mittlerweile komisch; oder ich habe gerade Tomaten auf den Augen [keineahnung]. Naja...

Mach es vielleicht so:
Zeige: Für jedes beliebige, aber feste $k [mm] \in \IN$ [/mm] ist die Folge [mm] $\left(\left(1+\frac{k}{n}\right)^n\right)_{n \in \IN}$ [/mm] monoton wachsend und nach oben beschränkt. Daraus folgt dann die Konvergenz dieser Folge für jedes $k [mm] \in \IN$. [/mm]

Dann gilt für beliebiges, aber festes $k [mm] \in \IN$: [/mm]
[m]\limes_{n \to \infty}\left(1+\frac{k}{n}\right)^{n}[/m]
[m]\stackrel{betrachte\;Teilfolge\;(n_j)_{j \in \IN}\;von\;(n)_{n \in \IN}\;mit\;n_j:=j\cdot{}k}{=} \limes_{j \to \infty}\left(1+\frac{k}{n_j}\right)^{n_j}[/m]
[m]= \limes_{j \to \infty}\left(1+\frac{k}{j\cdot{}k}\right)^{j\cdot{}k} [/m]
[m]= \left[\limes_{j \to \infty}\left(1+\frac{1}{j}\right)^{j}\right]^k[/m]
[m]= e^k[/m]
]

>  B) [mm]\limes_{n\rightarrow\infty}[/mm] (1- 1/n) hoch n = 1/e
> (HInweis Zeigen sie zunächst :
> [mm]\limes_{n\rightarrow\infty}(1-[/mm] 1/nhoch 2)hoch n =1)

Zu dem Hinweis:
Siehe diesen Thread ([m]\leftarrow[/m] click it! :-)).
  
So, jetzt bist erst mal du an der Reihe! Vielleicht wird deine Frage dann ja auch wieder als Frage für Hilfsbereite deklariert, wenn Bemühungen erkennbar sind.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]