matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeseuklidische Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - euklidische Normalform
euklidische Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklidische Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:26 Do 14.03.2013
Autor: Inocencia

Aufgabe
Man bestimme die euklidische Normalform der affinen Quadrik di bzgl des kart. Koordinatensystems (welches von 0 und den kanonischen Basisvektoren gebildet wird) durch diese Gleichung

[mm] 2x_1^{2} -3x_2^{2} [/mm] + [mm] 2x_1 x_3 [/mm] + [mm] 2x_3^{2} [/mm] - 12 = 0

Also ich habe einmal die Matrix gebildet:

[mm] \pmat{ 2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & 2 } [/mm]

EW ausgerechnet: {-3,1,3}

Eigenvektoren:
zu EV 3: [mm] \vektor{1 \\ 0 \\ 1} [/mm]
zu EV 1: [mm] \vektor{-1 \\ 0 \\ 1} [/mm]
zu EV -3: [mm] \vektor{0 \\ 1 \\ 0} [/mm]


Was mache ich jetzt? Muss ich die Eigenvektoren normieren?

        
Bezug
euklidische Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Do 14.03.2013
Autor: leduart

Hallo
ja, du musst normieren. siehe auch
http://de.wikipedia.org/wiki/Hauptachsentransformation
Gruss leduart

Bezug
        
Bezug
euklidische Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 14.03.2013
Autor: MathePower

Hallo Inocencia,

> Man bestimme die euklidische Normalform der affinen Quadrik
> di bzgl des kart. Koordinatensystems (welches von 0 und den
> kanonischen Basisvektoren gebildet wird) durch diese
> Gleichung
>
> [mm]2x_1^{2} -3x_2^{2}[/mm] + [mm]2x_1 x_3[/mm] + [mm]2x_3^{2}[/mm] - 12 = 0
>  Also ich habe einmal die Matrix gebildet:
>  
> [mm]\pmat{ 2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & 2 }[/mm]
>  
> EW ausgerechnet: {-3,1,3}
>  
> Eigenvektoren:
>  zu EV 3: [mm]\vektor{1 \\ 0 \\ 1}[/mm]
>  zu EV 1: [mm]\vektor{-1 \\ 0 \\ 1}[/mm]
>  
> zu EV -3: [mm]\vektor{0 \\ 1 \\ 0}[/mm]
>  
>
> Was mache ich jetzt? Muss ich die Eigenvektoren normieren?


Ja.

Siehe hierzu: []Euklidische Normalform


Gruss
MathePower

Bezug
                
Bezug
euklidische Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Do 14.03.2013
Autor: Inocencia

Vielen Lieben Dank euch zweien. Ich versuchs gleich nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]