matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigeseuklidische Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - euklidische Norm
euklidische Norm < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklidische Norm: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 30.04.2012
Autor: DudiPupan

Aufgabe
Sei $n [mm] \in \mathbb{N}$ [/mm] und [mm] $\parallel [/mm] * [mm] \parallel$ [/mm] eine beliebige Norm auf [mm] $\mathbb{R}^n$. [/mm]
[mm] $\parallel [/mm] * [mm] \parallel_2$ [/mm] bezeichne die euklidische Norm auf [mm] $\mathbb{R}^n$. [/mm]
Beweisen Sie, dass es [mm] $c_1,c_2 [/mm] > 0$ derart gibt, dass
[mm] $c_1\parallel [/mm] x [mm] \parallel_2\leq\parallel x\parallel\leq c_2\parallel x\parallel_2$ [/mm]
für alle [mm] $x\in\mathbb{R}^^n [/mm] gilt, indem sie zunächst Folgendes Zeigen:

a) Es gibt ein $C>0$ so, dass [mm] $\parallel [/mm] x [mm] \parallel\leq C\parallel x\parallel_2 [/mm] $ für alle $x [mm] \in \mathbb{R}^n$ [/mm] gilt.

Hinweis: Darstellung von $x$ über eine Basis von [mm] $\mathbb{R}^n$. [/mm]

b) Die Funkteion [mm] $f:\{ x\in \mathbb{R}^n | \parallel x \parallel_2=1\}\to \mathbb{R}, x\mapsto \parallel [/mm] x [mm] \parallel$ [/mm] nimmt ihr positives Minimum  an.


Halllo,
ich arbeite gerade an der Aufgabe hier oben, aber mir fehlt irgendwie der Ansatz und würde mich über Hilfe freuen.
Vielen Dank
DudiPupan

        
Bezug
euklidische Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 30.04.2012
Autor: leduart

Hallo
1. du musst schon die Eigenschaften einer Norm verwenden.
2. und den Tip [mm] x=\summe_{i=1}^{n}a_i*e_i e_i [/mm] die Basen vn [mm] R^n [/mm]
fehlt da nicht ein [mm] c_2 [/mm] in deiner Ungleichung?
Gruss leduart


Bezug
                
Bezug
euklidische Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 30.04.2012
Autor: DudiPupan


> Hallo
>  1. du musst schon die Eigenschaften einer Norm verwenden.
>  2. und den Tip [mm]x=\summe_{i=1}^{n}a_i*e_i e_i[/mm] die Basen

Ist das Absicht, dass hier 2 Mal [mm] $e_i$ [/mm] steht?

> [mm]R^n[/mm]
>  fehlt da nicht ein [mm]c_2[/mm] in deiner Ungleichung?

Ja, stimmt, entschuldigung, wurde korrigiert :)

>  Gruss leduart
>  


Bezug
                        
Bezug
euklidische Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 30.04.2012
Autor: leduart

Hallo
sorry, das zweite [mm] e_i [/mm] ist ein Tipfehler
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]