matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpereukl Algorithmus mit Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - eukl Algorithmus mit Polynomen
eukl Algorithmus mit Polynomen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eukl Algorithmus mit Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Do 15.04.2010
Autor: tasjasofie

Aufgabe
Gesucht ist ein f, das folgende Kongruenz löst:
f = X-1 mod X²+1
f = X+1 mod [mm] X^3 [/mm]

hallo,
ich schreibe morgen eine Klausur in Diskrete Mathe. Nun weiß ich leider nicht, wie das gehen soll!

Meine Idee wäre das ich Polynomdivision mit [mm] X^3 [/mm] und [mm] X^2+1 [/mm] mache um dann die Darstellung von Bezout zu erhalten:

[mm] X^3 [/mm] = X(X²1) = X Rest -X
(X²+1) = -X(-X) +1
-X = -X(1) + 0
Daraus folgt, dass der ggT = 1 ist

Nach Bezout: 1 = [mm] X(X^3) [/mm] - (X²+1)(X²+1)
also ist [mm] \lambda [/mm] = X
und [mm] \mu [/mm] = - (X²+1)

Nun weiß ich aber nicht wie ich weiter machen muss :(
Wäre echt klasse, wenn mir hier jemand helfen könnte!!!
tasjasofie

        
Bezug
eukl Algorithmus mit Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Do 15.04.2010
Autor: felixf

Hallo!

> Gesucht ist ein f, das folgende Kongruenz löst:
>  f = X-1 mod X²+1
>  f = X+1 mod [mm]X^3[/mm]
>  hallo,
>  ich schreibe morgen eine Klausur in Diskrete Mathe. Nun
> weiß ich leider nicht, wie das gehen soll!
>  
> Meine Idee wäre das ich Polynomdivision mit [mm]X^3[/mm] und [mm]X^2+1[/mm]
> mache um dann die Darstellung von Bezout zu erhalten:
>  
> [mm]X^3[/mm] = X(X²1) = X Rest -X
>  (X²+1) = -X(-X) +1
>  -X = -X(1) + 0
>  Daraus folgt, dass der ggT = 1 ist
>  
> Nach Bezout: 1 = [mm]X(X^3)[/mm] - (X²+1)(X²+1)
>  also ist [mm]\lambda[/mm] = X
>  und [mm]\mu[/mm] = - (X²+1)
>  
> Nun weiß ich aber nicht wie ich weiter machen muss :(

Schau doch mal, ihr habt sicher schonmal was aehnliches gehabt an Aufgabe?!

Ansonsten, hier ein Tipp:

* fuer $a := X [mm] (X^3)$ [/mm] gilt $a [mm] \equiv [/mm] 1 [mm] \pmod{X^2 + 1}$, [/mm] und $a [mm] \equiv [/mm] 0 [mm] \pmod{X^3}$; [/mm]

* fuer $b := [mm] -(X^2 [/mm] + 1) [mm] (X^2 [/mm] + 1)$ gilt $b [mm] \equiv [/mm] 0 [mm] \pmod{X^3 + 1}$, [/mm] und $b [mm] \equiv [/mm] 1 [mm] \pmod{X^3}$. [/mm]

Damit kannst du dir jetzt eine Loesung basteln.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]