matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhilosophieethisches Grundprinzip Singers
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Philosophie" - ethisches Grundprinzip Singers
ethisches Grundprinzip Singers < Philosophie < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Philosophie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ethisches Grundprinzip Singers: Umfrage (beendet)
Status: (Umfrage) Beendete Umfrage Status 
Datum: 20:46 Sa 20.09.2008
Autor: kleinerprinz

Aufgabe
Singers ethisches Grundprinzip besteht lautet: "Die INteressen aller sollen gleichermaßen berücksichtigt werden." Was sagst du dazu?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich finde dies im Allgemeinen doch sehr gerecht. Aus dieser Idee gehen ja auch soziale Gleichheit, etc. hervor.

Aber was meint ihr dazu?

        
Bezug
ethisches Grundprinzip Singers: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Sa 20.09.2008
Autor: Somebody


> Singers ethisches Grundprinzip besteht lautet: "Die
> INteressen aller sollen gleichermaßen berücksichtigt
> werden." Was sagst du dazu?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich finde dies im Allgemeinen doch sehr gerecht. Aus
> dieser Idee gehen ja auch soziale Gleichheit, etc. hervor.
>
> Aber was meint ihr dazu?

Ich finde diese Kurzform als ethisches Prinzip äusserst problematisch. Der Mann scheint von solchen Begriffen wie "Interessenkonflikt" noch nie gehört zu haben: wie sollen sich widerstreitende Interessen "gleichermassen berücksichtigt werden"?
  Es ist auch nicht so, dass alle "Interessen" (was ist darunter genau zu verstehen?) gleich berechtigt sind und daher im Falle eines Interessenkonfliktes "gleichermassen zu berücksichtigen" wären. Zum Beispiel hat meiner Meinung nach das Interesse eines Nichtrauchers, in seiner Gesundheit nicht geschädigt zu werden, vor dem Interesse eines Nikotinsüchtigen, seiner Sucht nachzugehen, Vorrang. Und wenn einer (polemisches Beispiel) ein Interesse hat, seine Erbtante ins Jenseits zu befördern, dann schlage ich vor, ein solches "Interesse" kurzerhand als für ein "gleichermassen berücksichtigt werden" gänzlich unzulässig ist.

Des weiteren ist mir durchaus unklar, wie man über das Vorliegen von "Interessen" (mehreren? wie gewichteten?) entscheiden will. Manchmal wird von den "wohlverstandenen Interessen" von Jemandem gesprochen: und will damit suggerieren, dass der/die Betreffende nicht notwendigerweise in der Lage sei, selbst über ihre Interessen Bescheid zu wissen. Zum Beispiel könnte man sich auf den Standpunkt stellen wollen, dass ein generelles Rauchverbot sogar im wohlverstandenen Interesse eines Rauchers wäre (und zwar um seiner eigenen Gesundheit willen). Mit etwas gutem Willen kann man sicher auch noch weit problematischere Beispiele finden.

Bezug
        
Bezug
ethisches Grundprinzip Singers: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Sa 20.09.2008
Autor: leduart

Hallo
So ne Kurzform einer Aussage kann man eigentlich nicht beantworten oder ne wirkliche Meinung haben wenn die einzelnen Worte nicht im sinne Singers definiert sind. Was genau ist Interesse, was beruecksichtigen, was gleichermassen?
letztes etwa kann einfach jeder das gleiche Stimmrecht, oder jede meinung dasselbe Gewicht und noch viel mehr Moeglichkeiten! Was stellst du dir denn unter den Begriffen vor? Denk dabei nur mal an einen Interessenkonflikt in deiner Familie, wie wird der mit dieser maxime geloest?
Gruss leduart

Bezug
        
Bezug
ethisches Grundprinzip Singers: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 21.09.2008
Autor: Josef

Hallo kleinerprinz,

> Singers ethisches Grundprinzip besteht lautet: "Die
> INteressen aller sollen gleichermaßen berücksichtigt
> werden." Was sagst du dazu?


Zugegeben, es ist wohl die Idealvorstellung; sie lässt sich aber nicht verwirklichen.

Interesse (zu lateinisch inter esse: dabei sein), Neigung zu zielgerichtetem Denken oder Handeln, das sich auf bestimmte Gegenstände, Sachverhalte oder Personen bezieht.

Die meisten psychologischen Theorien verstehen unter Interesse die Zusammensetzung aus einer emotionalen und einer kognitiven Komponente und von daraus entstehenden Handlungstendenzen.

Die emotionale Komponente beruht auf der Attraktivität einer Sache oder einer Person bzw. der Sympathie ihr gegenüber.

Die kognitive Komponente besteht aus einer positiven Bewertung des Sachverhalts oder bestimmter Aspekte eines Menschen.

Die Handlungstendenzen werden bewirkt durch eine Belohnungserwartung, etwa bei einer Annäherung an eine als attraktiv empfundene Person. Die so definierten Interessen weisen meist nur geringe Zusammenhänge zu anderen psychologischen Konstrukten wie Intelligenz und Persönlichkeit auf.

Microsoft ® Encarta ® Enzyklopädie 2005 ©  1993-2004 Microsoft Corporation. Alle Rechte vorbehalten.



Man  unterscheidet subjektive und objektive Interessen.
Als subjektives Interesse bezeichnet man Gewinn, Nutzen, Bedürfnisse, die man zu erringen oder zu haben glaubt, sowie die damit verbundene Aufmerksamkeit bzw. das Gefallen daran und das Streben nach Befriedigung von Bedürfnissen bzw. nach Erringung eines Nutzens.
Als objektives Interesse werden die Bedürfnisse bezeichnet, die man tatsächlich besitzt - unabhängig davon, ob man sich ihrer bewusst ist oder nicht.

In beiden Bedeutungen kann man sagen, dass Individuen, Gruppen, Institutionen und Staaten Interessen haben.


[]Fundstelle


Fazit:
Alle verschiedenartige Interessen einzelner Gruppen lassen sich nicht gleichermaßen verwirklichen. Dieses Ziel kann  vielleicht nur durch Kompromisse aller annähern zufriedenstellend erreicht werden.


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Philosophie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]