matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)erwartungstreuer Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - erwartungstreuer Schätzer
erwartungstreuer Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erwartungstreuer Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 10.05.2010
Autor: julsch

Aufgabe
Seien [mm] X_{1},...X_{n} [/mm] unabhängige ZV mit [mm] x_{i} \sim N(\mu,\sigma^{2}) [/mm] (i=1,...,n) für einen bekannten Parameter [mm] \mu [/mm] und einen unbekannten Parameter [mm] \sigma^{2} \in (0,\infty). [/mm]
a) Bestimmen Sie eine Konstante c [mm] \in \IR, [/mm] so dass [mm] T_{1} =\bruch{c}{n}\summe_{i=1}^{n}|X_{i} [/mm] - [mm] \mu| [/mm] ein erwartungstreuer Schätzer für [mm] \sigma [/mm] ist.
b) Berechnen Sie die Risikofunktion von [mm] T_{1}. [/mm]
c) Zeigen Sie, dass [mm] t_{2}=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-\mu)^{2} [/mm] ein erwartungstreuer Schätzer für [mm] \sigma^{2} [/mm] ist.
d) Bestimme die Verteilung von [mm] T_{2}. [/mm]
e) Zeigen Sie, dass [mm] T_{2} \sim AN(\sigma^{2}, \bruch{2\sigma^{4}}{n}) [/mm] gilt.
f)Bestimmen Sie die asymptotische Verteilung von [mm] T_{3}=\wurzel{T_{2}}. [/mm]
g) Vergleichen Sie die Schätzer [mm] T_{1} [/mm] und [mm] T_{3}. [/mm]

Hallo!
Ich habe mich an Aufgabe a gesetzt und stoße da auf ein kleines Problem.
Ich muss ja den Erwartungswert von [mm] T_{1} [/mm] bestimmen und dann gleich [mm] \sigma [/mm] setzen, um c zu erhalten. Beim Bestimmen des Erwartungswertes habe ich schon ein Problem:
[mm] E(\bruch{c}{n}\summe_{i=1}^{n}|X_{i}-\mu|) [/mm]
[mm] =\bruch{c}{n}\summe_{i=1}^{n} E(|X_{i}-\mu|) [/mm]
Ich weiß leider nciht, wie ich den Erwartungswert von dem Betrag berechnen soll. Ich habe es mit der Fallunterscheidung [mm] X_{i} \ge \mu [/mm] und [mm] X_{i} [/mm] < [mm] \mu [/mm] versucht, jedoch hatte ich dann für die Erwartungswerte Null raus, was ja nciht sein kann, da ich den Erwartungswert gleich [mm] \sigma [/mm] setzen soll, um c zu erhalten.

Kann mir jemand weiterhelfen?
Liebe Grüße
Julsch

        
Bezug
erwartungstreuer Schätzer: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:28 Di 11.05.2010
Autor: julsch

Ich habe mich jetzt erstmal mit den anderen Aufgabenteilen beschäftigt. Aufgabe c) und d) habe ich schon fertig. Aufgabe e) hab ich auch eine Lösung, weiß jedoch nicht genau, ob ich es so machen kann. Sitze jetzt gerade über Aufgabenteil f).

zu e):
[mm] T_{2} [/mm] ist [mm] Gamma(\bruch{n}{2}, \bruch{n}{2\sigma^{2}}) [/mm]
[mm] E(T_{2}) [/mm] = [mm] \sigma^_{2} [/mm]
[mm] Var(T_{2}) [/mm] = [mm] \bruch{2\sigma^{4}}{n} [/mm]
Dann folgt aus dem ZGS:
[mm] \bruch{T_{2} - \sigma^{2}}{\wurzel{\bruch{2\sigma^{4}}{n}}} [/mm] ist N(0,1) verteilt
Daraus folgt dann, dass [mm] T_{2} AN(\sigma^{2}, \bruch{2\sigma^{4}}{n}) [/mm] verteilt ist.

ist das so richtig?

zu f):
Ich soll ja nun die Verteilung von [mm] \wurzel{T_{2}} [/mm] bestimen. Mehr oder weniger würde ich es mit dem Verfahren von e) machen, d.h. Erwartungswert und Varianz berechnen und dann den ZGS anwenden. Beim berechnen des Erwartungswertes hab ich jedoch schon ein Problem.
[mm] E(\wurzel{T_{2}})=\bruch{1}{\wurzel{n}}E(\wurzel{\summe_{i=1}^{n}(X_{i}-\mu)^{2}}) [/mm] und hier fängt mein Problem an. Wie berechne ich den Erwartungswert von einer Wurzel?

Liebe Grüße
Julia

Bezug
                
Bezug
erwartungstreuer Schätzer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Mi 12.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 11.05.2010
Autor: gfm


> Seien [mm]X_{1},...X_{n}[/mm] unabhängige ZV mit [mm]x_{i} \sim N(\mu,\sigma^{2})[/mm]
> (i=1,...,n) für einen bekannten Parameter [mm]\mu[/mm] und einen
> unbekannten Parameter [mm]\sigma^{2} \in (0,\infty).[/mm]
>  a)
> Bestimmen Sie eine Konstante c [mm]\in \IR,[/mm] so dass [mm]T_{1} =\bruch{c}{n}\summe_{i=1}^{n}|X_{i}[/mm]
> - [mm]\mu|[/mm] ein erwartungstreuer Schätzer für [mm]\sigma[/mm] ist.
>  b) Berechnen Sie die Risikofunktion von [mm]T_{1}.[/mm]
>  c) Zeigen Sie, dass
> [mm]t_{2}=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-\mu)^{2}[/mm] ein
> erwartungstreuer Schätzer für [mm]\sigma^{2}[/mm] ist.
>  d) Bestimme die Verteilung von [mm]T_{2}.[/mm]
>  e) Zeigen Sie, dass [mm]T_{2} \sim AN(\sigma^{2}, \bruch{2\sigma^{4}}{n})[/mm]
> gilt.
>  f)Bestimmen Sie die asymptotische Verteilung von
> [mm]T_{3}=\wurzel{T_{2}}.[/mm]
>  g) Vergleichen Sie die Schätzer [mm]T_{1}[/mm] und [mm]T_{3}.[/mm]
>  Hallo!
>  Ich habe mich an Aufgabe a gesetzt und stoße da auf ein
> kleines Problem.
>  Ich muss ja den Erwartungswert von [mm]T_{1}[/mm] bestimmen und
> dann gleich [mm]\sigma[/mm] setzen, um c zu erhalten. Beim Bestimmen
> des Erwartungswertes habe ich schon ein Problem:
>  [mm]E(\bruch{c}{n}\summe_{i=1}^{n}|X_{i}-\mu|)[/mm]
>  [mm]=\bruch{c}{n}\summe_{i=1}^{n} E(|X_{i}-\mu|)[/mm]
>  Ich weiß
> leider nciht, wie ich den Erwartungswert von dem Betrag
> berechnen soll. Ich habe es mit der Fallunterscheidung
> [mm]X_{i} \ge \mu[/mm] und [mm]X_{i}[/mm] < [mm]\mu[/mm] versucht, jedoch hatte ich
> dann für die Erwartungswerte Null raus, was ja nciht sein
> kann, da ich den Erwartungswert gleich [mm]\sigma[/mm] setzen soll,
> um c zu erhalten.
>  
> Kann mir jemand weiterhelfen?
>  Liebe Grüße
>  Julsch

Es gilt [mm] |X|=2*1_{\{X\ge 0\}}*X-X [/mm] und deswegen

[mm] E(|X|)=2*E(1_{\{X\ge 0\}}*X)-E(X) [/mm]

und wenn wie hier [mm] X\sim N(0,\sigma^2) [/mm] gilt, weil [mm] X=N(\mu,\sigma^2)-\mu, [/mm] dann ist [mm] E(|X|)=2*E(1_{\{X\ge 0\}}*X)=2\integral_0^{\infty}xn_{0,\sigma^2}(x)dx [/mm]

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]