matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenerstes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - erstes Integral
erstes Integral < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erstes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Fr 24.08.2012
Autor: paula_88

Aufgabe
x''=-sin(x)
Die obere DGL 2. Ordnung soll in eine zweidimensionale DGL 1. Ordnung umgeschrieben werden und ein erstes Integral gefunden werde.

Hallo an alle,
ich weiß nicht genau, wie man ein erstes Integral findet und bitte um Hilfe :-)
Ich weiß allerdings, dass eine Funktion h: U [mm] \to \IR [/mm] genau dann ein erstes Integral von F ist, wenn Dh(x)(F(x))=0, [mm] \forall [/mm] x [mm] \in [/mm] U.
Leider weiß ich nicht wie ich ran zugehen habe und würde es auch gerne verstehen, vielleicht hat ja jemand eine gute Erklärung oder einen Tip?
Ist F''(x)=-sin(x) oder wie steht die Funktion F(x) im Zusammenhang mit der oben gegebenen Ableitung x''=-sin(x)??
Vielen Dank im Voraus :-)

        
Bezug
erstes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Fr 24.08.2012
Autor: teo

Hallo,

zunächst einmal schreibst du das System um in ein zweidimensionales System 1. Ordnung. So wie ichs bei deinem letzten post gemacht habe (leider hat dir ja keiner mehr geanwortet).

Dann kannst du das umformulieren in die Form (*):

[mm] x_{10}'= f_1(x_{10},x_{11}) [/mm]
[mm] x_{11}'=f_2(x_{10},x_{11}) [/mm]

Für ein erstes Integral [mm] E:\IR^2 \to \IR^2 [/mm] gilt dann [mm] \frac{dE(x_{10},x_{11})}{dx_{10}}*f_1(x_{10},x_{11}) + \frac{dE(x_{10},x_{11})}{dx_{11}}*f_2(x_{10},x_{11}) = 0 [/mm]

Du musst also E so bestimmen, dass die obige Bedingung erfüllt ist.

Grüße

Bezug
                
Bezug
erstes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Fr 24.08.2012
Autor: paula_88

Hallo teo,
vielen Dank für die schnelle Antwort, ein paar Fragen habe ich allerdings noch ;-)

> zunächst einmal schreibst du das System um in ein
> zweidimensionales System 1. Ordnung. So wie ichs bei deinem
> letzten post gemacht habe (leider hat dir ja keiner mehr
> geanwortet).
>  
> Dann kannst du das umformulieren in die Form (*):
>  
> [mm]x_{10}'= f_1(x_{10},x_{11})[/mm]
>  [mm]x_{11}'=f_2(x_{10},x_{11})[/mm]

Wenn ich das mal bezüglich meiner Aufgabenstellung umformuliere:
[mm] x_{10}'= f_1(x_{10},x_{11})=x' [/mm]
[mm] x_{11}'=f_2(x_{10},x_{11})=x''=-sin(x) [/mm]

>  
> Für ein erstes Integral [mm]E:\IR^2 \to \IR^2[/mm] gilt dann
> [mm]\frac{dE(x_{10},x_{11})}{dx_{10}}*f_1(x_{10},x_{11}) + \frac{dE(x_{10},x_{11})}{dx_{11}}*f_2(x_{10},x_{11}) = 0[/mm]

Frage: Wie genau schlussfolgerst du diese Gleichung? Das sehe ich leider noch nicht genau :-S

Wende ich diese an, komme ich auf Folgendes:
[mm] \Rightarrow \bruch{dh}{dx}x'-sin(x)\bruch{dh}{dx'}=0 [/mm]
[mm] \Rightarrow \bruch{dh}{dx}x'=sin(x)\bruch{dh}{dx'} [/mm]
[mm] \Rightarrow \bruch{1}{dx}x'=sin(x)\bruch{1}{dx'} [/mm]
[mm] \Rightarrow \integral{x' dx'} [/mm] = [mm] \integral{sin(x) dx} [/mm]
[mm] \Rightarrow \bruch{(x')^{2}}{2}=cos(x) [/mm]

Wenn ich jetzt weiter umstellen würde, würde ich die DGL lösen, ich möchte ja aber nur ein erstes Integral, wie muss ich also weiter vorgehen?

Vielen Dank für die Geduld, Paula

Bezug
                        
Bezug
erstes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Fr 24.08.2012
Autor: teo


> Hallo teo,
>  vielen Dank für die schnelle Antwort, ein paar Fragen
> habe ich allerdings noch ;-)
>  
> > zunächst einmal schreibst du das System um in ein
> > zweidimensionales System 1. Ordnung. So wie ichs bei deinem
> > letzten post gemacht habe (leider hat dir ja keiner mehr
> > geanwortet).
>  >  
> > Dann kannst du das umformulieren in die Form (*):
>  >  
> > [mm]x_{10}'= f_1(x_{10},x_{11})[/mm]
>  >  
> [mm]x_{11}'=f_2(x_{10},x_{11})[/mm]
>  
> Wenn ich das mal bezüglich meiner Aufgabenstellung
> umformuliere:
> [mm]x_{10}'= f_1(x_{10},x_{11})=x'[/mm]
>  
> [mm]x_{11}'=f_2(x_{10},x_{11})=x''=-sin(x)[/mm]
>  >  
> > Für ein erstes Integral [mm]E:\IR^2 \to \IR^2[/mm] gilt dann
> > [mm]\frac{dE(x_{10},x_{11})}{dx_{10}}*f_1(x_{10},x_{11}) + \frac{dE(x_{10},x_{11})}{dx_{11}}*f_2(x_{10},x_{11}) = 0[/mm]
>  
> Frage: Wie genau schlussfolgerst du diese Gleichung? Das
> sehe ich leider noch nicht genau :-S
>  
> Wende ich diese an, komme ich auf Folgendes:
>  [mm]\Rightarrow \bruch{dh}{dx}x'-sin(x)\bruch{dh}{dx'}=0[/mm]
>  
> [mm]\Rightarrow \bruch{dh}{dx}x'=sin(x)\bruch{dh}{dx'}[/mm]
>  
> [mm]\Rightarrow \bruch{1}{dx}x'=sin(x)\bruch{1}{dx'}[/mm]
>  
> [mm]\Rightarrow \integral{x' dx'}[/mm] = [mm]\integral{sin(x) dx}[/mm]
>  
> [mm]\Rightarrow \bruch{(x')^{2}}{2}=cos(x)[/mm]

Das ist viel zu umständlich!!

Du kannst das doch aus dieser Gleichung direkt ablesen:


[mm]\frac{dE(x_{10},x_{11})}{dx_{10}}*f_1(x_{10},x_{11}) + \frac{dE(x_{10},x_{11})}{dx_{11}}*f_2(x_{10},x_{11}) = 0[/mm]

Du hast links schon [mm] x_{11} [/mm] stehen und rechts (vom +) [mm] -sin(x_{10}) [/mm] also sieht man doch recht schnell, dass E nach [mm] x_{10} [/mm] abgeleitet sin(x_10) und E nach [mm] x_{11} [/mm] abgeleitet [mm] x_{11} [/mm] sein muss.

Folglich bekommst du sofort [mm] E(x_{10},x_{11}) [/mm] = [mm] cos(x_{10})-\frac{1}{2}x_{11}^2. [/mm]

So nun hast du das erste Integral gefunden. Jetzt musst du noch beweisen, dass es wirklich eins ist.

Hierzu ist erst mal zu zeigen, dass E nicht konstant ist (offensichtlich). und nun, dass für die die Lösungen [mm] x_{10}(t),x_{11}(t) [/mm] des DGL-Systems die Funktion E längs der Lösungskurven kostant ist. Das zeigst du indem du

[mm] \frac{dE(x_{10},x_{x_11})}{dt} [/mm] = 0 zeigst. Mach das mal, dann siehst du wie man auf obigen Ansatz kommt.

Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]