epimorphismus+srjektiv+funktio < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:12 Sa 18.12.2004 | Autor: | Marianne |
Erstmal hallo!
Wir haben folgende Aufgabe bekommen:
Eine Funktion f : A → B heißt ein Epimorphismus, falls für alle Mengen C und alle Funktionen h : B → C und k : B → C
folgendes gilt: aus h ◦ f = k ◦ f folgt h = k.
Beweise:
Sei f : A → B eine Funktion. Dann sind folgende Aussagen äquivalent:
(i) f ist surjektiv,
(ii) es existiert eine Funktion g : B → A mit f ◦ g = [mm] id_{B},
[/mm]
(iii) f ist ein Epimorphismus.
Wir sollen alles nacheinander implizieren und dann von (iii) zu (i).
Wenn ich danach surjektiv vorraussetze, würde ich (ii) beweisen durch das skript. Dort steht, dass surjektiv eine Abbildung von A nach B ist, so wär das mit dem [mm] id_{B} [/mm] doch geklärt, reicht dies als Beweis?
Und danch wüßt ich nicht mehr weiter, da über all bloß steht surjektiv=Epim.
Ich denke, wenn ich es dann bis dahin hab, kann ich den rest allein.
Ich hoffe dies reicht als Lösungsansatz, aber ich hab schon im internet geschaut, hab aber trotzdem nicht viel mehr gefunden als sur=Epim, sur=a [mm] \RightarrowB.
[/mm]
Die Def. von Epimor. hat mir auch nich weiter geholfen, da ich keine Verbindung gefunden habe zw. (ii) und (iii), da ich nicht wusste, wie ich h=k mit f ◦ g = [mm] id_{B} [/mm] in Verbindung bringen konnte.
Ich würde mich sehr freuen über Hilfe (auch nur neue denkansätze), weil mich diese Aufgabe schon ein bißchen überfordert.
Tschaui
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:19 Sa 18.12.2004 | Autor: | Hanno |
Hallo Marianne!
> Wenn ich danach surjektiv vorraussetze, würde ich (ii) beweisen durch das skript. Dort steht, dass surjektiv eine Abbildung von A nach B ist, so wär das mit dem $ [mm] id_{B} [/mm] $ doch geklärt, reicht dies als Beweis?
Was meinst du mit "geklärt"? Ich verstehe hier leider nicht, was du meinst. Hier mal ein paar Denkansätze wie du es machen könntest:
Implikation [mm] $(I)\Rightarrow [/mm] (II)$:
Was heißt es denn, dass die Abbildung [mm] $f:A\to [/mm] B$ surjektiv ist? Das heißt, dass es zu jedem [mm] $b\in [/mm] B$ ein [mm] $a\in [/mm] A$ so gibt, dass $f(a)=b$ gilt. Wenn du nun zeigen sollst, dass eine Funktion [mm] $g:B\to [/mm] A$ so existiert, dass [mm] $f\circ g=id_B$ [/mm] bzw [mm] $\forall b\in [/mm] B: f(g(b))=b$ gilt, dann muss die Funktion $g$ jedem Element [mm] $b\in [/mm] B$ ein Element [mm] $a\in [/mm] A$ so zuweisen, dass $f(a)=b$ gilt - ist das immer möglich? Klar, denn das ist genau die Definition der Surjektivität!
Implikation von [mm] $(II)\Rightarrow(III)$:
[/mm]
Ein paar Worte zur Definition des Epiomorphimus:
Was muss gelten, damit zwei Abbildungen gleich sind? Klar, Definitions- und Zielmenge müssen übereinstimmen. Und weiter? Natürlich müssen die Abbildungen auch in allen Bildern übereinstimmen, d.h. jedes Element der Definitionsmenge von beiden Abbildungen wird auf das gleiche Element der Zielmenge abgebildet. Genau dann sind die beiden Abbildungen gleich.
So, nun wissen wir, dass für einen Epimorphismus die Implikation [mm] $h\circ f=k\circ f\Rightarrow [/mm] h=k$ gilt. Was muss erfüllt sein, damit die Abbildungen h und k gleich sind? Definitions- und Zielmenge müssen übereinstimmen: das ist nach Definition der beiden Abbildungen $h$ und $k$ gegeben. Nun müssen die Abbildungen aber jedes Element auf ein gleiches Element abbilden. Ist dies gegeben? Auf den ersten Blick schon, allerdings muss man vorsichtig sein: die Abbildungen stimmen nämlich für alle Elemente der Menge [mm] $f(A)=\{f(x)|x\in A\}$, [/mm] also für alle Elemente des Bildes von A unter $f$ überein. Es gilt allerdings nicht automatisch $f(A)=B$ - wenn dem nämlich nicht so ist, dann wissen wir von Elementen aus [mm] $B\setminus [/mm] f(A)$ nicht, ob auch für sie ihre Bilder in $k$ und $h$ übereinstimmen. Daher kann im Falle [mm] $f(A)\not= [/mm] B$ nicht $k=h$ impliziert werden. Im Umkehrschluss folgt daraus, dass [mm] $h\circ f=k\circ f\Rightarrow [/mm] h=k$ nur dann gelten kann, wenn $f(A)=B$ gilt. Dann nämlich wissen wir von allen Elementen aus $B$, dass $h$ und $k$ sie auf gleiche Elemente in $C$ abbilden. Und nun der entscheidende Schritt: wann gilt [mm] $f(A)=\{f(x)|x\in A\}=B$? [/mm] Genau dann, wenn es zu jedem [mm] $b\in [/mm] B$ ein [mm] $a\in [/mm] A$ mit $f(a)=b$ gibt - und genau das ist die Definition der Surjektivität!
So, jetzt halte ich meinen Mund und lasse dich erst einmal verdauen :)
Wenn du noch Fragen hast, nur zu!
Liebe Grüße und Viel Erfolg,
Hanno
|
|
|
|