matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1endliche teilüberdeckungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - endliche teilüberdeckungen
endliche teilüberdeckungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche teilüberdeckungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mi 06.06.2007
Autor: LaLuna1123

Aufgabe
Die folgenden Mengen sind nicht kompakt:

A:= [ 0, [mm] \infty [/mm] )   B:= [0,1)     C:= [mm] \IQ \cap [/mm] [0,1]

Geben Sie für jede dieser Mengen eine offene Überdeckung an, die keine endliche teilüberdeckung enthält!

Ich weiß einfach nciht genau wie ich an diese Aufgabe herangehen soll....
Kann ich bie A z.B. I= {-1/n; n} nehmen? Aber wie beweise ich dann, dass es keine endliche Teilüberdeckung ist...ALso bis jetzt habe ich nur den Ansatz, dass ich annehme, dass ich ein INtervall wegnehmen kann, und dann zu dem Widerspruch komme, dass A dann aber nicht mehr ganz überdeckt ist...Ich weiß nur nicht wie ich das hinschreiben soll...

Bei B liegt 1 nicht mehr in der Menge, heißt dass ich muss eine offene Überdeckung finden, die sich 1 annähert und dann zeigen, dass wenn ich 1 Intervall wegnehme, , die Überdeckung eben nicht mehr ganz so nah an 1 ist?

Ja und bei C habe ich leider garkeine Ahnung...

        
Bezug
endliche teilüberdeckungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mi 06.06.2007
Autor: generation...x

A ist ganz leicht: Denke an eine Kette von offenen Mengen, die sich links und rechts jeweils nur ein wenig überschneiden - wenn man eine herausnimmt, dann ist es keine Überdeckung mehr. Ach ja, ganz links kannst du locker über die 0 hinaus ins Negative. Beispiel:
[mm]O_0 = (-1, 2)[/mm], [mm]O_1 = (1, 4)[/mm], ...

Bei der B solltest du zeigen, dass zu jeder endlichen Teilmenge von solchen offenen Mengen einen Punkt gibt, der zwar im Interval aber nicht mehr in der Teilmenge liegt - sprich, du musst versuchen eine Vorschrift anzugeben, wie man einen solchen Punkt findet.


Bezug
                
Bezug
endliche teilüberdeckungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Mi 06.06.2007
Autor: LaLuna1123

Und diese Verkettung von Mengen muss ich jetzt irgendwie mit Variablen angeben, oder?
also z.b. [mm] M=\cup [/mm] (i;i+2) [mm] i\in N\cup [/mm] {0}

Bezug
                        
Bezug
endliche teilüberdeckungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mi 06.06.2007
Autor: generation...x

Um im obigen Beispiel zu bleiben:

[mm]O_i = (2i - 1, 2i+2) [/mm]

Der Trick ist ja, das das innere Drittel der jeweiligen Menge nur in dieser einen Menge liegt - lässt man diese Menge weg, hat man insgesamt keine Überdeckung mehr. Mach dir mal eine Zeichnung, dann wird dir alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]