matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikelektrisches feld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - elektrisches feld
elektrisches feld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elektrisches feld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:22 Mi 01.11.2006
Autor: ruya

Aufgabe
Im luftleeren Raum befinden sich, voneinander  entfernt, zwei vernachlässigbar kleine Ladungsträger Q1 und Q2. Berechnen sie die Kraft, mit der die beiden Ladungsträger sich anziehen.
Q1= 1,602 * [mm] 10^{-18} [/mm] As,   Q2= -6,408 * [mm] 10^{-19} [/mm] As  

hi leute,
bin dankbar für jede hilfe. ich weiß nicht wie ich sowas berechnen soll? ich kenne die formel dazu nicht.

        
Bezug
elektrisches feld: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Mi 01.11.2006
Autor: leduart

Hallo ruya
Du sagst uns nicht ob das für Schule oder Uni ist, was für Vorwissen du hast usw.
Physik besteht doch nicht aus "Formeln" die man weiss oder nicht weiss! Du könntest die Aufgabe nicht bekommen, wenn ihr nicht über Coulombkraft geredet hat. Das ist die Kraft, die di 2 geladenen Körper aufeinander ausüben. Schlimmstenfalls guck die in ner Formelsammlung nach.
In deiner Aufgabe fehlt auch die Entfernung der 2 ladungen, ohne die kannst du die Kraft nicht ausrechnen.
Gruss leduart

Bezug
                
Bezug
elektrisches feld: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Mi 01.11.2006
Autor: ruya

ups da hab ich vergessen die entfernung aufzuschreiben. sie beträgt 1 [mm] \mu [/mm] m. die aufgabe ist für die uni, wir haben sowas in der informatik gesprochen. aber ich hab leider kein plan wie sowas geht, da ich weder physik noch informatik typ bin. in dieses fach bin ich auch nur so reingerutscht. ich hoffe mit eurer hilfe werd ich spaß daran finden.

Bezug
        
Bezug
elektrisches feld: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 01.11.2006
Autor: leduart

Hallo ruya
was ist ein Physik-Typ?
Coulombsches Kraftgesetz: Kraft F Ladung Q Entfernung r

[mm] $F=\bruch{1}{4*\pi*\epsilon_0}*\bruch{Q_1*Q_2}{r^}$, [/mm]

Wenn du alles in m und As rechnest kommt F in Newton raus.

[mm] \epsilon_0 [/mm] ist die sog. Dielektrizitätskonstante, die du in ner Tabelle nachsiehst, weil du sowas ja auch lernen musst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]