matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraeinheitswurzel, minimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - einheitswurzel, minimalpolynom
einheitswurzel, minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einheitswurzel, minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Di 16.06.2009
Autor: bobby

Hallo,

vielleicht koennt ihr mir bei der folgenden Aufgabe helfen, ich komme da nicht so richtig weiter:

Es sei [mm] \xi_{n} [/mm] eine primitive n-te Einheitswurzel.
Zeige: [mm] Irr(\xi_{n} [/mm] + [mm] \xi_{n}^{-1},\IQ) [/mm] = [mm] \produkt_{1 \le i \le n/2}^{ } [/mm] (x - [mm] \xi_{n}^{i} [/mm] - [mm] \xi_{n}^{-i}) [/mm]   mit ggT(i,n)=1.

Ich weis, dass [mm] Irr(\xi_{n},\IQ) [/mm] = [mm] x^{n} [/mm] -1 ist und hab das Minimalpolynom fuer einzelne Koerper, wie z.B. [mm] Irr(\wurzel{2},\IQ), [/mm] auch schonmal bestimmt, daher denke ich, dass ich mir in meinem Fall (bei der Aufgabe) auch, wie wir das bei anderen Beispielen gemacht haben, wieder die Bilder von [mm] \xi_{n} [/mm] + [mm] \xi_{n}^{-1} [/mm] unter Anwendung der Automorphismen aus [mm] Gal(\IQ(\xi_{n}):\IQ) [/mm] angucken muss, bzw. gucken, welche Bilder auftreten koennen.
Aber genau damit komme ich jetzt in Bezug auf meine Aufgabe nicht klar und weis dann auch so nicht wie weiter.

Ein anderes Problem habe ich dann damit:

Berechne die Koeffizienten von [mm] Irr(\xi_{5} [/mm] - [mm] \xi_{5}^{-1},\IQ). [/mm]

Ich hoffe, jemand von euch kann mir da helfen...

        
Bezug
einheitswurzel, minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Mi 17.06.2009
Autor: felixf

Hallo bobby!

> vielleicht koennt ihr mir bei der folgenden Aufgabe helfen,
> ich komme da nicht so richtig weiter:
>  
> Es sei [mm]\xi_{n}[/mm] eine primitive n-te Einheitswurzel.
>  Zeige: [mm]Irr(\xi_{n}[/mm] + [mm]\xi_{n}^{-1},\IQ)[/mm] = [mm]\produkt_{1 \le i \le n/2}^{ }[/mm]
> (x - [mm]\xi_{n}^{i}[/mm] - [mm]\xi_{n}^{-i})[/mm]   mit ggT(i,n)=1.
>  
> Ich weis, dass [mm]Irr(\xi_{n},\IQ)[/mm] = [mm]x^{n}[/mm] -1 ist und hab das

Das halte ich fuer ein Geruecht: [mm] $x^n [/mm] - 1$ hat immer $1$ als Nullstelle und ist somit nur fuer $n = 1$ irreduzibel.

Es gilt [mm] $x^n [/mm] - 1 = [mm] \prod_{i=1}^n [/mm] (x - [mm] \xi_n^i)$ [/mm] und [mm] $Irr(\xi_n, \IQ) [/mm] = [mm] \prod_{i=1 \atop ggT(i, n) = 1}^n [/mm] (x - [mm] \xi_n^i)$; [/mm] zweiteres ist ein echter Teiler von [mm] $x^n [/mm] - 1$ (ausser fuer $n = 1$).

> Minimalpolynom fuer einzelne Koerper, wie z.B.
> [mm]Irr(\wurzel{2},\IQ),[/mm] auch schonmal bestimmt, daher denke
> ich, dass ich mir in meinem Fall (bei der Aufgabe) auch,
> wie wir das bei anderen Beispielen gemacht haben, wieder
> die Bilder von [mm]\xi_{n}[/mm] + [mm]\xi_{n}^{-1}[/mm] unter Anwendung der
> Automorphismen aus [mm]Gal(\IQ(\xi_{n}):\IQ)[/mm] angucken muss,
> bzw. gucken, welche Bilder auftreten koennen.

Exakt. Wie sehen die Automorphismen von [mm] $Gal(\IQ(\xi_n) [/mm] : [mm] \IQ)$ [/mm] aus? Also worauf bilden sie [mm] $\xi_n$ [/mm] alles ab?

Jetzt betrachte mal die Bilder von [mm] $\xi_n [/mm] + [mm] \xi_n^{-1}$. [/mm] Ist $M$ die Menge der Bilder, so gilt [mm] $Irr(\xi_n [/mm] + [mm] \xi_n^{-1}, \IQ) [/mm] = [mm] \prod_{\alpha \in M} [/mm] (x - [mm] \alpha)$; [/mm] dein Ziel sollte also sein, $M$ zu beschreiben. Laut Aufgabenstellung soll $M = [mm] \{ \xi_n^i + \xi_n^{-i} \mid 1 \le i \le n/2, \; ggT(i, n) = 1 \}$ [/mm] gelten.

> Ein anderes Problem habe ich dann damit:
>  
> Berechne die Koeffizienten von [mm]Irr(\xi_{5}[/mm] -
> [mm]\xi_{5}^{-1},\IQ).[/mm]

Wie sehen die Bilder von [mm] $\xi_n [/mm] - [mm] \xi_n^{-1}$ [/mm] unter den Automorphismen aus? Kannst du fuer [mm] $Irr(\xi_n [/mm] - [mm] \xi_n^{-1}, \IQ)$ [/mm] eventuell eine aehnliche Formel wie im ersten Aufgabenteil finden? Oder zumindest fuer $n = 5$? Wenn ja, rechne damit [mm] $Irr(\xi_{5} -\xi_{5}^{-1},\IQ)$ [/mm] aus.

LG Felix


Bezug
                
Bezug
einheitswurzel, minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 17.06.2009
Autor: bobby

vielen dank für die antwort.
hat mir wirklich etwas geholfen, habe aber heute auch erfahren, dass in teil zwei der aufgabe ein fehler in der aufgabenstellung war...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]